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Abstract
Computational drug repurposing methods, particularly biomolec-
ular network-based disease-drug-target interaction models, are
essential tools for integrating large-scale heterogenous molecular
information and revealing functional mechanisms, as well as for
main regulatory modules of interactants which can be useful
in developing new drugs. In the present study, a drug-centric
network for a parasitic disease (Echinococcosis) and therapeutic
drugs have been considered. A complex network with more
than 12,000 vertices and more than 33,000 edges representing
interactions of 84 echinococcosis-related genes with associated
proteins was built and analyzed. The networks of disease
similarity and drug similarity were constructed based on the
complex network. As a result, three drugs (D08356, D00701,
and D00506) associated with three candidate diseases through
three pathways and a protein complex have been extracted. This
effort tries to predict the anti-echinococcosis effects of the drugs’
combinations with benzimidazole.

Keywords: drug repurposing, interaction network,
machine-learning, parasitic disease.



1. INTRODUCTION

In the past decades, the experimental approaches of drug development have been used
heavily. However, such processes can be quite time-consuming and costly as it would
take more than a decade and more than a billion dollars to introduce a new drug to the
market, [35].

In order to improve the situation, it is imperative to develop fast and reliable com-
putational methods, such as virtual screening for drug development, [22, 35, 36]. On
the other hand, instead of traditional drug discovery methods, computational drug re-
purposing approach based on the already existing FDA-approved (Food and Drug Ad-
ministration) drugs has been used effectively. This accelerates drug development time,
lowers the cost and failure rates, and increases the drug-target accuracy and safety of hu-
mans, [15,28,34,35]. Other diseases and drug side effects cause poor drug sensitivity and
less therapeutic efficacy while time progresses. As a result, the patients need to increase
drug doses, dosage regimen, as well as the combination of other drugs, etc., in efforts to be
cured of their diseases. This, in turn, would cause many negative effects on various organs
of the human body. A fast way to adapt to the new situation is drug repurposing, [32].
In general, computer-aided models of drug design and repurposing, simulation, and com-
puter vision technologies have come to play an important role in systems biology and
medicine research to understand complicated molecular interaction mechanisms and com-
plex regulatory functions. A variety of modelling tools have been developed to simulate
biochemical interactions, gene transcription kinetics, metabolic control, and drug delivery
pathway mechanisms, which helps us to systematically test, and experimentally verify
knowledge of biological and medicinal processes, [8, 31, 40, 43]. Network-based modelling
technique is a suitable tool for drug and disease-related studies, [11, 20,30,39,41].

We conducted here a research finding and exploring possible drug combinations against
Echinococcosis, [23]. In this regard, a multi-type dataset of echinococcosis-related genes,
proteins, and drugs were collected from various public sources, [1, 3, 12]; different het-
erogeneous interaction networks based on collected information were built; a qualitative
analysis of interaction networks suggested that a certain principle of genes, proteins, path-
ways of drugs are important in network regulations. Different modelling platforms were
deployed in the construction and analysis of molecular interaction networks - to mention
some: Cytoscape, STICTH, GeneCard, KEGG, STRINGS, [1, 4, 6, 25,26,37].

The mathematical and biological modelling foundations and data sources, on which
the article was based, are presented in the next section.

2. PRELIMINARY AND METHODS

2.1. Biological network analysis

Let us introduce some notions and notations of graph and network characteristics used
in the background of biological network construction and analysis.

A biological network is used not only in representing biological processes, but also
in analytic and hypothesis formulation, [11]. The analysis and visualization of biologi-
cally relevant networks representing metabolic, regulatory, or signaling pathways, protein-
protein or genetic interactions, or connections between similar ligands has become com-
monplace. With the advent of high-throughput methods that generate vast amounts of
data from diverse measurement sources, biological networks have become increasingly
important as an integrating context for data, [20]. Network tools give functionality for
studying complex processes. We can analyze the global characteristics of the data via
metrics such as degree, clustering, shortest path, centrality, and density, [19]. We can
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identify key elements, and important subnets which could help us explore interaction
mechanisms, modularity, etc.

For instance, the stress of a node in a biological network such as a protein-signaling
network indicates the relevance of a protein as functionally capable of holding together
communicating nodes. The higher the value, the higher the relevance of the protein in
connecting regulatory molecules. A network motif is a pattern of connectivity that occurs
more frequently than might be expected by a random connection of nodes. As might be
expected by the reuse we often see in biology, biological networks tend to have a small
set of network motifs that act like components in a larger circuit, [5]. Biological networks
are classified into certain categories such as pathways, similarity networks, regulatory
networks, and interaction networks, [24, 29].

In mathematical terms, a biological network is a graph written as G = (V (G), E(G), ϕG)
where V (G) is the set of vertices (nodes) and E(G) is the set of edges in the graph. ϕG

is the set of incidence functions that define which edge goes with which vertices. The
edges between nodes can either be directed or undirected. A few measurement attributes
related to network structure and its vertices and edges were considered as follows.

Node degree deg(v) of node v is the number of edges connected to this node. In a
directed network, the node indegree is the number of edges directed towards this node,
and the node outdegree is the number of edges directed away from this node. The length
of a path is the number of edges forming it, and there can be many paths connecting two
given vertices. An edge-weighted directed network is a digraph where weights associated
with each edge.

A shortest path/distance from vertex s to vertex t is a directed path such that no
other paths exist with a lower weight. The length of the shortest path is denoted as
S(s, t). Vertex connectivity refers to the number of its neighbors. For a vertex n, the
neighborhood connectivity is determined by the average of all its neighbor connections.

Network diameter is the longest of the shortest paths between two vertices. If the
network is disconnected, its diameter is determined by the longest of the diameters of
each connected component.

Clustering coefficient is a measure of the degree to which nodes form a complete graph.
The local clustering coefficient of undirected graphs is defined as Ci =

2|{ejk}|
ki(ki−1)

. The average
clustering coefficient is C = 1

n
Σn

i=1Ci

Another important network measurement is centrality, it indicates which node takes
up critical position in one whole network. Most typical degree centrality measures are
degree centrality, betweenness centrality and closeness centrality.

Degree centrality of a node v is calculated CD(v) =
deg(v)

(n−1)(n−2)
, where n is the number

of nodes in the network.
Stress centrality of vertex v is the number of all shortest paths passing through it:

CS(v) = Σs ̸=v ̸=t∈V ρst(v), where ρst(v) is the number of shortest paths passing through
v. Stress centrality of edge e is CS(e) = Σs∈VΣt∈V ρst(e), where ρst(e) is the number of
shortest paths containing edge e.

In both cases, stress centrality measures the amount of communication that passes an
element in an all-to-all scenario.

Betweenness centrality for a node v is calculated as CB(v) = Σs ̸=v ̸=t∈V
σst(v)
σst

, where σst

is the number of shortest paths from s to t, σst(v) is the number of shortest paths from s
to t pass through node v. Betweenness centrality is to measure one node undertaking a
mediation role in a network. If one node locates in the only way that others nodes have
to go through, such as communication, then this node should be important and have a
high betweenness centrality.
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Closeness centrality of vertex v is calculated based on shortest paths as Cc(v) =
n−1

Σjd(i,j))

where i ̸= j, n is the number of nodes, d(i, j) is the length of the shortest path from vertex
i to vertices j in the network. Closeness centrality measures how short the shortest paths
are from node i to all nodes. Closeness centrality is a useful measure that estimates how
fast the flow of information would be through a given node to other nodes.

For the readers’ convenience note that one could distinguish between centralities as
degree centrality to measure activity of transferring and communication, betweenness
centrality to calculate mediation or control of interest, and closeness centrality to estimate
the level of efficiency and convenience, [9].

Connected Components. In an undirected network, all pairwise connected vertices form
a connected component. The number of connected components represents the connectivity
of the network, and the fewer connected components, the more strongly connected the
network. The number of vertices in each component is called the size of the component.
A separate network can be created and topology analyzed by selecting a large connected
component of the network.

Clustering methods are commonly used in biological network analysis to group network
elements based on certain metrics, [19]. A variety of algorithms are used for cluster
analysis, all based on the similarity measure of elements. For example, the similarity of
two points in n-dimensional space is measured by the Euclidean distance between them:

d(p, q) =
√
(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2.

For the reader’s reference, we mention here a few common clustering approaches used in
systems medicine modelling: Hierarchical clustering, centroid linkage, k-Means clustering,
MCL clustering, spectral clustering, etc., [13].

TABLE I
Echinococcosis genes

No. Gene Symbol Description Category GC Id Scores
1 HLA-DRB1 Major Histocompatibility Complex, Class II, DR Beta 1 Protein Coding GC06M032578 11.58690453
2 MT-CO1 Mitochondrially Encoded Cytochrome C Oxidase I Protein Coding GCMTP005906 10.81720829
3 TAP2 Transporter 2, ATP Binding Cassette Subfamily B Member Protein Coding GC06M032821 10.69569111
4 TLR2 Toll Like Receptor 2 Protein Coding GC04P153684 9.982717514
5 TLR4 Toll Like Receptor 4 Protein Coding GC09P117704 9.931704521
6 HLA-B Major Histocompatibility Complex, Class I, B Protein Coding GC06M061261 9.87610817
7 HLA-DQB1 Major Histocompatibility Complex, Class II, DQ Beta 1 Protein Coding GC06M061358 9.757335663
8 IL6 Interleukin 6 Protein Coding GC07P022725 8.776535988
9 MT-ND1 Mitochondrially Encoded NADH:Ubiquinone Oxidoreduc-

tase Core Subunit 1
Protein Coding GCMTP003309 8.54378891

10 IFNG Interferon Gamma Protein Coding GC12M068154 8.49133873
11 IL10 Interleukin 10 Protein Coding GC01M206767 8.444591522
– – – – – –
81 INS Insulin Protein Coding GC11M002159 0.269246519
82 MB Myoglobin Protein Coding GC22M035606 0.190386042

2.2. A parasitic disease and drug combination

There are two forms of echinococcosis in humans: cystic echinococcosis (CE; aka hy-
datidosis) and alveolar echinococcosis (AE). They are caused by the tapeworms Echinococ-
cus granulosus and E. multilocularis, respectively, [23]. Currently, anti-parasitic or anti-
cancer drugs and compound classes are mainly used for chemotherapeutic treatment
against echinococcosis. In particular, benzimidazoles (albendazole, ABZ; mebendazole,
MBZ), given either alone or combined with praziquantel (PZ) show better efficacy, [10].
But studies have shown that benzimidazoles are not therapeutic enough and the chance
of cure with ABZ treatment in CE cases ranged from 11.8% to 35.2% only, [14,18]. Also,
some patients may not be able to use ABZ/MBZ, and it is common for helminths to
be resistant to benzimidazole drugs, [17]. Therefore, there is an important need for new
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and improved drugs against echinococcosis, [38]. Recently, interactions and efficacies of
some old drugs against echinococcosis have been explored but have not yet been officially
recommended for treatment, [33].

Drug-drug interaction has three types of effects: doubling, taking two drugs with the
same effect can intensify their side effects; antagonism, two drugs with opposite effects
interact, thereby reducing the effectiveness of one or both; alteration, one drug can alter
the way another drug is absorbed, distributed, metabolized, or excreted in the body. For
drug-disease interaction, sometimes a drug that is good for one disease can have a negative
effect on another disease, [7].

Drug repurposing of approved drugs provides an effective method for rapid identifi-
cation of new therapeutic agents to treat diseases that have drug-resistant bacteria and
other emerging infectious diseases, [28]. Many active compounds identified from pheno-
typic screens have weak activities and cannot be directly applied in humans as a single
agent, [32, 42]. Therefore, synergistic drug combination is particularly used in drug re-
purposing.

3. RESULTS

Molecular network analysis. The objective of this work was to predict possible drug
combinations that treat the considered parasitic diseases in a direct or indirect way and re-
veal potential drug target molecules. To do so, basic qualitative analysis on the molecular
interaction networks of disease and drug-related data have been carried out.

82 different types of genes of echinococcosis and its pathogens were extracted from a
public library genecards.org [12] as shown in Table I. In the next step, those proteins
that interact with the 82 genes were filtered from 13 different libraries as shown in Table
II, and corresponding gene-protein, protein-protein interaction networks were constructed,
where Cytoscape platform [26] was utilized. Attributes of each network and merged ones
were presented in Table III. In order to reduce the size of merged large network with 12,173
vertices and 33,171 edges and then identify critical components, ranking of vertices and
edges by their attributes, betweenness centrality, closeness centrality, eccentricity, stress
for vertex, while weight, confidence-score, edge-betweenness for edge, respectively, have
been performed. By eliminating the low scored vertices and edges out from the network,
a molecular network composed of strongly linked key protein-protein was obtained.

TABLE II
Disease-protein association network

No. Database # Description #vertex #edges
1 iRefIndex 30106 protein-protein, imported, bipartite expansion, evidence 6241 30106
2 mentha 7325 protein-protein, imported, clustered, spoke expansion 2 1
3 InnateDB-All 5462 protein-protein, internally-curated, spoke expansion, 1681 5462
4 BioGrid 5145 protein-protein, internally-curated, rapid curation, spoke 3257 5145
5 tfact2gene 4249 text-mining, internally-curated, imported, 619 4249
6 Reactome-FIs 3924 protein-protein, predicted, imported, clustered 23 33
7 UniProt 2776 protein-protein, nucleicacid-protein, smallmolecule-protein, 4 5
8 InnateDB 1590 protein-protein, internally-curated, spoke expansion, 593 1590
9 EBI-GOA-

nonIntAct
908 protein-protein, nucleicacid-protein, rapid curation, 504 908

10 MatrixDB 649 protein-protein, smallmolecule-protein, internally-curated, 183 536
11 bhf-ucl 536 protein-protein, smallmolecule-protein, nucleicacid-protein 183 536
12 BAR 99 protein-protein, imported, spoke expansion, predicted 90 99
13 MPIDB 1 protein-protein, internally-curated, imex curation, spoke 2 1

Merged network 12,173 33,171

The heat map in Figure 1.A shows the node attributes of the gene protein association
network as an example.

We analyzed topological and functional properties of the network utilizing PCA (prin-
ciple component analysis) [16] and clustering methods of jActiveModules app, then
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TABLE III
Network statistics
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1 iRefIndex 6241 30106 2.779 13 7 4.344 6.926 0.133 31
2 Mentha
3 InnateDB-All 1681 5462 2.924 10 5 0.002 3.546 0.131 8
4 BioGrid 3257 5145 2.461 14 7 0.001 5.735 0.166 26
5 tfact2gene 619 4249 4.305 7 4 0.007 3.205 0.342 2
6 Reactome-FIs 23 33 3.048 4 2 0.152 1.121 0.661 2
7 UniProt
8 InnateDB 593 1590 2.709 13 7 0.005 2.432 0.161 16
9 EBI-GOA-nonIntAct 504 908 2.351 10 5 0.024 1.840 0.326 74
10 MatrixDB
11 bhf-ucl 183 538 7.423 5 3 0.146 0.947 0.460 23
12 BAR 90 99 2.278 6 3 0.032 2.379 0.460 4

Figure 1. A. Protein node attributes (heat map) in the network. B. The main five modules.

averageShortestPathlength, betweenessCentrality, clusteringCoefficient, degree, neighbor-
hoodConnectivity dimensions and similarity were computed resulting 10 key sub-networks
(motifs) were identified in the network, see Table IV. These networks were further consid-
ered as main regulatory units of the network. Moreover, as shown in Table V and Figure
1.B, the entire network was divided into 5 sub-modules linked to each other through the
principle components (proteins) of each module.

Drug-disease interaction network. WHO (World Health Organization) suggests two
drugs, namely Albendazole and Mebendazole, for the treatment of echinococcosis, [10,27].
The target molecules, other interacting drugs, transporters, and enzymes of mentioned
drugs listed in Table VI were obtained from DrugBank [1]. Using the online search engine
STITCH [4], interaction network of each Albendazole and Mebendazole with some other
proteins and drug compounds are constructed as depicted in Figure 2.

Heterogeneous network for drug-disease interactions. Looking for potential drugs
and their combinations having anti-echinococcosis effects, 14 candidate drugs were found
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TABLE IV
10 motifs (subnet) of the gene-protein association network

SubNetworks Molecules Av.Shortest
PathLength

Betweenness
Centrality

Clustering
Coefficient

Degree Neighborh.
Connectivity

MAPK3 2.55 0.01 0.46 16.00 16.75
NFKB1 2.24 0.04 0.27 26.00 17.82
MAPK14 2.33 0.02 0.34 23.00 17.43

MAPK1 2.50 0.01 0.39 19.00 15.63
MAPK14 2.33 0.02 0.34 23.00 17.43
NFKB1 2.24 0.04 0.27 26.00 17.82
MAPK3 2.55 0.01 0.46 16.00 16.75
STAT3 2.48 0.02 0.31 25.00 14.44
MAPK3 2.55 0.01 0.46 16.00 16.75
MAPK14 2.33 0.02 0.34 23.00 17.43
NFKB1 2.24 0.04 0.27 26.00 17.82
MAPK1 2.50 0.01 0.39 19.00 15.63
MAPK1 2.50 0.01 0.39 19.00 15.63
MAPK3 2.55 0.01 0.46 16.00 16.75
MAPK14 2.33 0.02 0.34 23.00 17.43
NFKB1 2.24 0.04 0.27 26.00 17.82
STAT3 2.48 0.02 0.31 25.00 14.44
MAPK1 2.50 0.01 0.39 19.00 15.63
MAPK3 2.55 0.01 0.46 16.00 16.75
MAPK14 2.33 0.02 0.34 23.00 17.43
NFKB1 2.24 0.04 0.27 26.00 17.82
MAPK8 2.24 0.02 0.30 24.00 34.92
STAT3 2.48 0.02 0.31 25.00 14.44
MAPK1 2.50 0.01 0.39 19.00 15.63
MAPK14 2.33 0.02 0.34 23.00 17.43
NFKB1 2.24 0.04 0.27 26.00 17.82
TNF 2.70 0.00 0.49 10.00 16.50
MAPK1 2.50 0.01 0.39 19.00 15.63
MAPK3 2.55 0.01 0.46 16.00 16.75
MAPK14 2.33 0.02 0.34 23.00 17.43
NFKB1 2.24 0.04 0.27 26.00 17.82
IL2RA 2.24 0.01 0.31 26.00 33.69
HLA-E 2.04 0.02 0.33 57.00 30.96
CD8A 1.84 0.07 0.25 83.00 26.63
HLA-G 2.20 0.02 0.35 51.00 30.27

HLA-B 2.14 0.01 0.30 37.00 37.38
HLA-E 2.04 0.02 0.33 57.00 30.96
CD8A 1.84 0.07 0.25 83.00 26.63
HLA-
DRA

1.69 0.16 0.17 74.00 25.69

HLA-A 2.22 0.01 0.42 47.00 32.68
HLA-G 2.20 0.02 0.35 51.00 30.27
CD8A 1.84 0.07 0.25 83.00 26.63
HLA-E 2.04 0.02 0.33 57.00 30.96

(see Table VII) from KEGG, GeneCard, and DrugBank [1, 2, 12] databases by entering
the disease name as a keyword. These 14 drugs were widely examined by using the
HDR app of Cytoscape [26]. First, a drug similarity network of 7,838 drugs with 887,883
interactions and a disease similarity network of 5,080 diseases with 19,729 interactions,
respectively, was built; 1,933 number of associations between the two similarity networks
were detected.
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TABLE V
The modular structure of the merged network from Table II

Module Active path Score #Nodes #Edges Module Node Edge Score
Module_1 20.4565164 611 2323

Module_1

34 433 26.242
Module_2 15.1492831 342 2656 49 210 8.750
Module_3 13.8364176 339 2744 21 60 5.900
Module_4 9.50119515 211 2225 13 25 4.167
Module_5 9.39945342 209 1659 6 9 3.600

TABLE VI
Targets of each drug ALBENDAZOLE and MEBENDAZOLE

No. Drug Targets Enzymes #Interact. drugs Transporter
1 ALBENDAZOL,

DB00518
NTubulin alpha-1A chain,
ATubulin beta-2 chain,
NTubulin beta-4B chain,
UFumarate reductase flavo-
protein subunit

Cytochrome P450 1A1, CYP1A1
Cytochrome P450 1A2, CYP1A2
Cytochrome P450 3A4, CYP3A4
Cytochrome P450 2C19, CYP2C19

581/719 P-glycoprotein 1,
ABCB1

2 MEBENDAZOLE,
DB00643

Tubulin alpha-1A chain,
TUBA1A

Cytochrome P450 1A1, CYP1A1 Cimetidine

Figure 2. Drug(Albendazole, Mebendazole)-protein interaction network. Stronger associations are rep-
resented by thicker lines. Protein-protein interactions are shown in grey, chemical-protein
interactions in green and interactions between chemicals in red. Chemical-chemical links are
used to extend the network. Small nodes: protein of unknown 3D structure, large protein
nodes: some 3D structure is known or predicted. (STITCH [4]).

In the second step, the 14 drugs with its associated diseases were extracted from the
drug-disease interaction network constructed in the previous step, Table VII.

Third, we checked new diseases that are potentially treated and/or affected by those
14 drugs among the disease similarity network. As a result, 3,222 candidate diseases out
of 5,080 were predicted, 7 of them had direct links to the 14 drugs, see Table VIII. Since
the drug-disease interaction network could be massive, for a simplicity purpose, the 3,222
diseases were ranked by RWRH algorithm [21] with parameters of Back probability 0.5,
Jumping probability 0.6, and Sub-Data (drug&disease) importance weight 0.7. Then, the
first 60 candidate diseases with higher ranks were selected for the further study. As an
example, six diseases with ranking scores are listed in Table IX. A drug-disease interaction
network composed of 80 vertices and 292 edges was constructed from the selected 60
diseases.

The heterogeneous network depicted in Figure 3 contains vertices representing 1 pro-
tein complex, 14 drugs, 7 known diseases, 53 unknown candidate diseases, 5 pathways, and
5 types of edges representing disease-disease, disease-pathway, disease-protein complex,
drug-disease, drug-pathway, and drug-protein functional interactions. The thickness of
the edges represents the strength (weight) of the link or interaction in the network. From
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TABLE VII
14 Anti-echinococcosis drug information

DrugBank ID Drug name Target genes
D00134 Albendazole (JAN/USP/INN), Albenza (TN)
D00252 Carbamazepine (JP17/USP/INN), Equetro (TN), Tegretol

(TN)
11280, 6323, 6326, 6328, 6329, 6331, 6334,
6335, 6336

D00368 Mebendazole (JAN/USP/INN), Vermox (TN)
D00427 Norvir (TN), Ritonavir (JAN/USAN/INN)
D00471 Biltricide (TN), Praziquantel (JAN/USP/INN)
D00506 Luminal (TN), Phenobarbital (JP17/USP/INN) 2554, 2555, 2556, 2557, 2558, 2559, 2560,

2561, 2562, 2563, 2564, 2565, 2566, 2567,
2568, 55879

D00512 Dilantin (TN), Phenytoin (JP17/USP/INN) 11280, 6323, 6326, 6328, 6329, 6331, 6334,
6335, 6336

D00701 Luminal sodium (TN), Phenobarbital sodium
(JAN/USP/INN)

2554, 2555, 2556, 2557, 2558, 2559, 2560,
2561, 2562, 2563, 2564, 2565, 2566, 2567,
2568, 55879

D02103 Aleviatin (TN), Dilantin (TN), Phenytoin sodium (USP),
Phenytoin sodium for injection (JP17)

11280, 6323, 6326, 6328, 6329, 6331, 6334,
6335, 6336

D05017 Metronidazole phosphate (USAN)
D07106 Albendazole oxide (INN)
D07595 Fosphenytoin sodium hydrate (JAN), Fostoin (TN) 11280, 6323, 6326, 6328, 6329, 6331, 6334,

6335, 6336
D08356 Gratusminal (TN), Phenobarbital diethylamine 2554, 2555, 2556, 2557, 2558, 2559, 2560,

2561, 2562, 2563, 2564, 2565, 2566, 2567,
2568, 55879

D10005 Ensulizole (USP/INN), Phenylbenzimidazole sulfonic acid

TABLE VIII
7 known diseases which have direct links with the 14 drugs in Table VII.

No. Disease ID Name Related genes
1 MIM121200 SEIZURES, BENIGN FAMILIAL NEONATAL, 1; BFNS1 3785
2 MIM121201 SEIZURES, BENIGN FAMILIAL NEONATAL, 2; BFNS2 3786
3 MIM143500 GILBERT SYNDROME 54658
4 MIM181500 SCHIZOPHRENIA; SCZD 1116, 1312, 1610, 1814, 207, 23780,

267012, 27184, 27185, 3356, 4524,
55366, 65078, 6854, 80832, 84062

5 MIM208085 ARTHROGRYPOSIS, RENAL DYSFUNCTION, AND
CHOLESTASIS 1; ARCS1

26276

6 MIM218800 CRIGLER-NAJJAR SYNDROME, TYPE I 54658
7 MIM237500 DUBIN-JOHNSON SYNDROME; DJS 1244

TABLE IX
Candidate diseases that could have (in)direct links with the 14 drugs listed in Table VII.

RankOMIM ID Title Score Type
8 MIM613404 ARTHROGRYPOSIS, RENAL DYSFUNCTION, AND CHOLESTASIS 2; ARCS2 0.00996769 Disease
9 MIM602079 TRIMETHYLAMINURIA; TMAU 0.00442980 Disease
10 MIM224100 ANEMIA, DYSERYTHROPOIETIC CONGENITAL, TYPE II; CDAN2 0.00321845 Disease
11 MIM606438 HUNTINGTON DISEASE-LIKE 2; HDL2 0.00236688 Disease
– – – – –
59 MIM613720 EPILEPTIC ENCEPHALOPATHY, EARLY INFANTILE, 7; EIEE7 0.00082928 Disease
60 MIM606437 MOVED TO 121200 0.00082928 Disease

the network, one can see that indirect links exist between drugs D08356, D00701, and
D00506 and diseases MIM611277, MIM605375, and MIM600513 through the pathways
and the protein complex. Meanwhile drugs D00506 and D00252 were linked by unknown
drug-drug network based on their interaction to the same diseases. The rest of the drugs
have no evidence linked to unknown or predicted drugs.

A first sight, the prediction raised was that the diseases MIM605375 (epilepsy, noc-
turnal frontal lobe, type 3), MIM611277 (generalized epilepsy with febrile seizures plus,
type 3; gefsp3), MIM600513 (epilepsy, nocturnal frontal lobe, type 1) might get treated by
only or combined drugs of Luminal sodium (TN), Phenobarbital sodium (JAN/USP/INN)
(D00701), Luminal (TN), Phenobarbital (JP17/USP/INN) (D00506), Gratusminal (TN),
Phenobarbital diethylamine(D08356), Carbamazepine (JP17/USP/INN), Equetro (TN),
Tegretol (TN) (D00252). Since these mentioned diseases were obtained from the similar-
ity network of echinococcosis (considered above), the effective drugs just revealed could
be effective anti-echinococcosis as well, which has to be investigated for further study.

The drug-disease interaction network depicted in the Figure 3 was divided into 2 main
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Figure 3. Heterogenous network of drug-disease interactions through pathways Nicotine addic-
tion/map05033, Morphine addiction/map05032, GABAergic synapse/map04727, Serotoner-
gic synapse/map04726, Retrograde endocannabinoid signaling/map04723 and a protein com-
plex GABA-A receptor (GABRA1, GABRB2, GABRG2).

Module_2_3
Module_2_2

Module_2_1 

Figure 4. Drug-Disease interaction network (Fig. 3) is divided into 3 clusters where Module_2_1 and
Module_2_2 are linked while Module_2_3 is isolated.

connected clusters and an isolated one based on its active components by jActiveModules
app, shown in Figure 4. As predicted above, drug D00506 is the main regulator of the
first module while the next sub-network is regulated by the drugs D00701, D00506, and
D08356.

4. CONCLUSION

Computer modelling and mathematical data analysis for a parasitic disease and pos-
sible therapeutic drugs were explored in this study. The dataset of considering disease
and relevant drugs used in the investigation were mined from the public databases, i.e.,
NCBI, KEGG, DrugBank, PuMed, and more. By using graph and network algorithms,
and automated systems (Cytoscape, STITCH, GeneCard, etc.) by utilizing obtained
dataset, biological network construction of disease and drug interactions, main molecular
regulations, structural, functional, and statistical analysis have been studied.

In the study of drug-disease interactions, 14 drugs against echinococcosis were selected,
7 diseases related to their direct reaction and 53 diseases that could be indirectly affected
by these drugs were identified. Out of these 53 diseases, 3 diseases namely MIM611277,
MIM605375, and MIM600513 (see the disease names and descriptions in Table VII and IX)
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were discovered having strong interactions with the 3 candidate drugs of D08356, D00701,
and D00506, or their combinations through a pathway map05033 (nicotine addiction)
while these three drugs have direct interactions with a protein complex 7461 (GABA-A
receptor), to which the disease MIM611277 is connected.

The drugs D08356, D00701, and D00506 have similar pharmacological effects for com-
mon targets, such as being used as neuropsychiatric agent and metabolizing enzyme in-
ducer while also affecting the nervous system. The above-mentioned drugs also affect the
sensory organs as anticonvulsant, sedative-hypnotic and anti-anxiety, [1]. Combinations
of them with nicotine and morphine could be used in the same manner as pain killers.

Thus, drug-centric study against echinococcosis suggests 3 similar diseases and 3 drugs
have a strong relation that could be explored for the further study to reveal the exact
mechanisms if they would have anti-echinococcosis effects and whether they could be used
in drug combination design. However, in this study, we have not presented any specific
agents for anti-echinococcosis.

We have developed a step-by-step methodology for a) mining disease and drug-related
integrated data from different public sources, b) construct heterogenous interaction net-
works, c) conduct analysis on the networks by grouping their structural and functional at-
tributes, forming connected clusters of sub-networks, and detect the main controlling mod-
ules in each sub-network. For example, protein-protein interaction network of echinococ-
cosis was divided into 10 regulator sub-networks and grouped into 5 main modules, which
allows analyzis simpler for the entire network.

For the next study, network based modelling and machine learning based data ana-
lyzing methods can be combined to predict and discover considering disease development
molecular mechanism, therapeutic drug compound structure, and target identification.
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