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Abstract 

Through this research work, we aimed to use a graph model to determine 
important drug substances that are proper for the Echinococcosis hydatid 
disease. Also, that model can be used in convergence with other similar 
diseases due to the genes of the Echinococcus granulosus that causes this 
parasitic disease, and to analyze it by applying graph algorithms to the 
established model. Furthermore, there is an urgent need to create a basic 
model for machine learning and artificial intelligence methods in health 
and pharmaceuticals. Also, the collection of genes and proteins registered 
in the official internationally recognized gene-disease databases, as well 
as the data of drugs and pharmaceutical products used for the specific 
disease, is the first step in the understanding and development of 
interdisciplinary science. In this paper, we define a heterogeneous graph 
with multiple types of nodes and edges as a basic model for future studies, 
as well as the methods and algorithms used in the study, considering the 
interrelationship between Echinococcus granulosus genes, proteins, 
diseases, and drugs. 

 

Keywords: echinococcus, drug interaction network, graph theory, data 
analysis 

 

1. INTRODUCTION 

Recently, zoonotic diseases have increased among 
Mongolians, and they are infectious diseases transmitted 
from animals to humans either directly or indirectly. 
Examples include foot and mouth disease, anthrax, bubonic 
plague, ringworm, and rabies. In modern veterinary science, 
there are more than 300 diseases that can be transmitted 
between animals according to the National Center for 
Zoonotic Disease Research [1]. It follows that about 160 of 
them are zoonotic diseases that can be transmitted from 
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animals to humans, which include rabies, anthrax, black death, FMS, and echinococcosis, 
which are caused by viruses, bacteria, parasites, fungi, and rickettsia. 

In 2012, the Ministry of Health declared [25] echinococcus to be one of the ten leading 
zoonotic diseases in Mongolia. And the causative agent in infection of this disease is 
Echinococcus granulosus, a small tapeworm liver cyst parasite found in dogs, foxes, and 
wolves [2]. It has a 3-6 mm long body consisting of 2-3 generations, and lives by sucking 
nutrients from the intestine/gut of the animals. When the venous blood is filtered after nesting 
in the liver, the larvae remain filtered and begin to grow into liver flukes. Furthermore, it 
forms parasitic cysts mainly in the liver, lungs, and other organs. 

The World Health Organization [26] reported that zoonoses result in 2.5 billion cases of 
human illness each year, and 2.7 million human deaths, but only a few drugs have been fully 
studied and used, therefore they are classified Echinococcosis as neglected diseases. There 
are 70 million farm animals in our country and about 40% of the working age population is 
involved with herds or animals.  Therefore, the risk of occurrence and transmission of this 
types of disease is considered high. In Mongolia, a study conducted in slaughterhouses [3] 
showed that there is a high prevalence of echinococcosis among animals. It was reported that 
the prevalence of ringworm among slaughtered animals is 3.5 percent, and among goats, it 
is 9.2 percent. 

Computer and medical scientists need to work together to develop and introduce new 
advanced methods and technologies in the research and analysis of new drugs for this 
disease. Therefore, time and resources to make progress and steps in new drug discovery and 
development are required too much, such as taking around 12 years and costing around a 
£1.15 billion in pharmaco-medical research. To save opportunities, we analyzed the data of 
echinococcus granulosus genes, proteins, and drugs using machine learning methods 
leveraging graph theory and methods. We implemented this research work in the following 
stages, and we will present the results in this article. 

• collected necessary data and prepared for machine learning 
• answered how to build a graphical model on the data to analyze the data 
• studied and developed some useful graph metrics and algorithms for use in research 
• tested and written to introduce and explain the test results. 

The research work consists of four main parts. The first part is an introduction to hydatid 
disease and its causative echinococci. The structure and implementation methods of 
algorithms are included. The last or fourth chapter describes the experimental data and 
results. 

2. RELATED WORKS 

Animal husbandry is our main industry, but at the same time, it is the main factor in the 
transmission of many types of viral and bacterial infectious diseases that are harmful to 
human health and can lead to death. One of them is the echinococcosis, and there is no drug 
or preparation for the perfect treatment of the causative Echinococcus granulosus, and 
antiparasitic drugs are used to stop the growth of cysts, reduce their size, reduce recurrence, 
and prepare for surgery [4]. Also, Mebendazole and Albendazole 10mg/kg twice a day for 
three months or in case of rupture of the primary cyst, praziquantel and protosolicide group 
drugs are used to prevent secondary cyst formation. 

Therefore, the main goal of this research is to extract new types of essential drugs based 
on the genetic information of echinococcus granulosus, or to confirm and prove whether 
existing drugs can be used together based on their similarity. Much research [14, 22-24] has 
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been done on medical and biological data, including biological networks, on processing and 
analysis using graph data structures. Recently, a significant amount of research has been 
conducted in this field along with the development of novel technologies such as machine 
learning and deep learning [10, 15-21]. 

For example, researchers Cheng et al. [10] researched the heterogeneous network to predict 
some interaction between one drug and an others based on drug composition, chemical 
elements, genomic characteristics, and therapeutic information. Also, network analysis works 
[15, 16] have applied deep learning methods to protein and protein interaction networks 
intending to accelerate new drug testing. Our work is unique in that it is done for a specific 
disease, and it is characterized by building networks, evaluating nodes, and predicting protein 
connections with the help of isolated seed genes. 

Currently, there are 11,355 genes and 42,941 proteins related to echinococcus granulosus 
in the NCBI [5] gene database. There are only two drugs available in the DrugBank [6], 
Albendazole (Approved, Vet Approved), which is approved for human use, and Toluene (Vet 
Approved), which is approved for animal use.  

3. THE PROPOSED METHODOLOGY 

Based on the echinococcal gene data, we have identified protein-protein interaction (D), 
protein-drug interaction (PDI), drug-disease interaction (DDI), and drug-target interactions 
(DTI). An 𝐺(𝑉, 𝐸, 𝒜, ℛ) graph was constructed to show the relationship between genes, 
proteins, drugs, and diseases by combining the bipartite graphs of DTI. 

Given graph 𝐺(𝑉, 𝐸, 𝒜, ℛ)  is a heterogeneous graph because it contains different types 
of vertices and edges. Given that each node is 𝑣 ∈ 𝑉 and each edge is 𝑒 ∈ 𝐸 in the graph, the 
functions corresponding to their types are 𝜏(𝑣): 𝑉 → 𝒜 and 𝜙(𝑒): 𝐸 → ℛ. The graph is 
undirected. The set of vertices of a heterogeneous graph 𝑉 = {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, . . .  , 𝑣௡}, and 𝐸 is 
the set of edges 𝐸 =  {𝑒௜௝  =  (𝑣௜,  𝑣௝) | 𝑣௜ ∊ 𝑉, 𝑣௝ ∊ 𝑉} were considered, respectively. In other 
words, depending on the connection of vertex 𝑣 with other vertices or nodes and the 
topological structure of the generated network, it will be determined how important the gene, 
protein, drug, or disease is an important node in the graph 𝐺(𝑉, 𝐸, 𝒜, ℛ). 

At the beginning of the research work, we need to collect the genes related to the selected 
disease, and these genes will be the seeds that can identify the echinococcus that causes the 
disease. So, Echinococcus granulosus is the causative agent that causes echinococcosis, is 
directly dependent on a certain number of genes, and it can be understood that humans and 
all other living organisms suffer from the disease due to the effect or mutation of genes. The 
21 echinococcal genes we selected are all 
human/homo-sapiens genes. Since genes 
define functional chains of all proteins 
and RNAs, we further derive PPIs 
associated with the identified genes.  
Next, we can obtain DDI network’s 
information from the pharmaceutical 
database, based on the fact that drugs are 
obtained by combining and synthesizing 
proteins from a medical point of view. 

In other words, we can also come up 
with drugs for other diseases that contain 
protein compounds in hydatid-related Figure 1. Overview of proposed model 
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drugs, and those drugs can be used alone or in combination for the treatment of that disease. 
Cheng et al [ 10] mentioned that DDIs are not identified during clinical trials in many cases, 
and are not reported until after the drug is approved. Therefore, we can identify drugs with 
similar ingredients available in advance from the constructed graph 𝐺(𝑉, 𝐸, 𝐴, 𝑅) with the 
help of an algorithm.   

We analyzed the graph by considering several important node metrics while constructing 
the graph. The graph was analyzed by considering several important node metrics, and we 
built PPI, PDI, DDI, and DTI networks based on the main 21 genes of Echinococcus 
granulosus hydatid worm, and combined them into a graph with heterogeneous nodes. In the 
following subsections, we have introduced graph analysis methods and algorithms, including 
degree centrality, proximity centrality, path centrality, and spectral centrality measures, 
respectively. 

Real networks generally consist of a large number of nodes and links. However, it does 
not mean every node is important to its network. Using the following measures, we have 
confidence in it is possible to calculate how important each node is to the network. 

3.1 Degree centrality 

The simplest, easy way is to measure the importance of a given vertex based on its degree. 
The number of connected nodes means that the node is important. Using Formula 1, we can 
directly calculate 𝐺(𝑉, 𝐸, 𝐴, 𝑅) based on the number of degrees of the vertex 𝑣. 

𝐶஽(𝑣) = 𝑑𝑒𝑔(𝑣) (1) 

Degree centrality directly depends on how many nodes are connected to that vertex 
in the given graph. For example, if vertex 𝑣 is the central node of a star-shaped network, the 
value of 𝐶஽ is 𝐶஽(𝑣) = 𝑘 − 1. So, the value of degree centrality should be normalized, and 
depending on the size of the network, the value of centrality will be as follows. 

𝐶஽(𝑣)෫ =
𝐶஽(𝑣)

|𝑉| − 1
 (2) 

Thus, the value of 𝐶஽(𝑣)෫  decreases to 0 ≤ 𝐶஽(𝑣)෫ ≤ 1. 

3.2 Proximity centrality (Closeness centrality) 

This type of centrality measure includes closeness, harmonic and eccentricity centrality 
measures, respectively. We only mention the closeness centrality measure here. A given node 
is connected to a small number of other vertices, but the value of closeness centrality may be 
relatively high. Because it depends on how many vertices can be connected by the fastest or 
shortest path. In other words, it depends on the length of the average shortest path. And on 
the contrary, it can be calculated depending on the size of the path. In other parts of the 
network or other vertices, depending on the average distance from 𝑣 to the vertex, the 
centrality of the vertex is considered, and how important 𝑣 is to the network is determined, 
and it is calculated by the following formula. 

𝐶஼(𝑣) =
1

∑ 𝑑(𝑣, 𝑢)௨
 (3) 

In other words, if 
ଵ

ௗ(௩,௨)
= 0, there is no path connecting the two vertices 𝑣 and 𝑢, and the 

harmonic concentration is normalized by dividing by |𝑉| − 1. Here, |𝑉| is the number of 
vertices in the graph. On larger networks, more paths are found, which reduces the numerical 
value of closeness centrality to a negligible number. Accordingly, we can also normalize as 
follows.  
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𝐶஼(𝑣)෫ =
|𝑉| − 1

∑ 𝑑(𝑣, 𝑢)௨
 (4) 

3.3 Path centrality (Betweenness centrality) 

The centrality measure is used to determine whether each vertex is important for the graph 
𝐺(𝑉, 𝐸, 𝐴, 𝑅) we have constructed, since its value depends on how influential the participation 
of node 𝑣 is in terms of the shortest paths connecting all other possible vertices connected to 
the given vertex. In other words, if there is a short path to all other vertices through that vertex, 
it means that the centrality value for the vertex 𝑣 will be high. If 𝜎௦௧(𝑣) is the shortest path 
from source s or starting vertex to target 𝑡 or ending vertex, it means that it passes through 
the vertex 𝑣. Paths connecting vertices 𝑠 and 𝑡 without crossing this vertex are also found, and 
the probability that the shortest path passes through this vertex is 𝑝௦௧(𝑣), and for the graph 
𝐺(𝑉, 𝐸, 𝐴, 𝑅).  At least one short path passes through the vertex 𝑣, 𝜎௦௧(𝑣) ≠ 0. The centrality 
value of vertex 𝑣 is calculated by the following Formula 5 betweenness centrality measure. 

𝐶஻(𝑣) = ෍
𝜎௦௧(𝑣)

𝜎௦௧
௦ஷ௩ஷ௧∈௏

 (5) 

On the contrary, if there is no short path in the graph that crosses the vertex 𝑣, the centrality 
value of the vertex is 𝐶஻(𝑣) = 0. 

3.4 Spectral centrality (Eigenvector centrality) 

For one node in the network, the node influence is calculated from how many other 
important nodes the node is connected to it. These types of measures include Eigenvector, 
PageRank, and Katz centrality measures. These spectral centrality measures are considered 
recursively, meaning that the centrality measure of each vertex affects the centrality measure 
of its connected neighbors. For a given graph 𝐺(𝑉, 𝐸, 𝐴, 𝑅), the number of vertices is 𝑁 = |𝑉| 
and we create a neighborhood matrix 𝐴 = (𝑎௩,௧). Here, 𝑎௩,௧ = 1 if vertex 𝑣 is connected to 
vertex 𝑡 and 𝑎௩,௧ = 0 if not. From this value, the centrality score 𝑥௩ for the vertex 𝑣 depends 
on the values of its neighboring vertices and is calculated by the following formula. 

𝐶ா(𝑣) = 𝑥௩ =
1

𝜆
෍ 𝑥௧ = 

௧∈ெ(௩)

1

𝜆
෍ 𝑎௩,௧𝑥௧ 

௧∈ீ

 (6) 

Here, 𝑀(𝑣) is the set of neighboring vertices of 𝑣, and λ is a constant numerical measure. 
The eigen value λ can be found in the following equation, which is the formula of the eigen 
vector. where x is an eigenvector or vector quantity. 

𝐴𝑥 = 𝜆𝑥  (7) 

 
Figure 2. Centrality measure's Taxonomy 
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If the interrelationship network of drugs, proteins, and drugs is represented by a non-
directional multivariate 𝐺(𝑉, 𝐸, 𝐴, 𝑅) graph, it is appropriate to choose this type of measure. 
Still, if it is expressed by a directed graph, other measures should be used. 

From the four types of centrality measures shown in Figure 2, one of each type, namely 
degree, closeness, eigenvector, and betweenness centrality measures, was tested in the next 
group on the prepared data, and the test results were included. 

4. EXPERIMENTAL RESULTS 

4.1 Experimental setups 

In our experiments, we constructed PPI, PDI, and PDI networks using the NetworkAnalyst 
[9] tool. Data from the open databases shown in Table I below were used to create these 
networks. NetworkAnalyst is a gene-centric online platform that can perform biological 
network analysis and visual analysis, and we chose it based on our belief that it would be 
suitable for further data extraction to work on specific Echinococcus granulosus genes. The 
tool is still under constant improvement and is a free online platform to use. 

TABLE I  

Source of experimental data 

4.2  Experimental datasets 

Data related to echinococcosis disease were obtained from the NCBI (National Center for 
Biotechnology Information) [5] gene pool. This library is a free downloadable database. The 
NCBI database contains a total of 11,355 genes, which belong to 11 species, including homo-
sapiens(human), musculus(mouse), norvegicus(rat), elegans(roundworm), and melanogaster 
(fruit fly) so on. We chose the human genes because of intending to derive a drug for humans 
from it. Human genes associated with this disease have been less studied than other species, 
with only 21 genes found in the database and used in our experiment. See Table V in the 
Appendix for details on these genes. 

4.3 Experimental results 

Using 21 homo-sapiens genes of 
Echinococcus granulosus, the causative agent 
associated with hydatid disease, we 
constructed a PPI network (see Figure 3). 

 A total of 17 seeds or important genes, 899 
nodes, and 1296 edges were formed in 
constructing the PPI network of 
Echinococcosis-related genes. Nodes represent 
proteins, and edges represent interactions 
between proteins. In a PPI network, proteins 
are directly or indirectly connected to each 
other. DTI subnetworks (Figures 5) were also 
constructed, showing which Echinococcosis 

Bipartite Graph Database Description 

PPI InnateBD [7] 
A repository containing information on the human, mouse, and bovine proteins, genes, and 
signaling pathways and a member organization of the International Molecular Exchange 
Consortium (IMEx). 

PDI 
DTI 

DrugBank [6] 
Drugbank is an online open database containing detailed information about drugs and drug 
targets. 

DDI DisGenNET [9] A large collection of human diseases and genes. 

Figure 3. The PPI network is associated with Echinococcus 
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related 21 genes are associated with other diseases. 

In the network shown in Figures 4a and 4b, square blue nodes represent diseases, and 
round red nodes represent proteins. For example, the protein coded MIR146A in Figure 4b is 
a protein associated with Alzheimer's disease and Alcohol use disorder. A total of 12 and 1 
seeds, 414 and 3 nodes, and 621 and 2 edges were established in the DTI network. We have 
created PDI networks showing echinococcal disease proteins and which drugs they interact 
with, as illustrated in the Appendix section (see Figure 5 a-f). Table II also provides general 
information about the networks. 

 

 
(a) (b) 

Figure 4. DTI network of 21 genes associated with Echinococcus granulosis 

For 𝐺(𝑉, 𝐸, 𝐴, 𝑅) spanning all subnets, the total number of nodes |V| = 2453; |E| = 5399, 
with five types of vertices (gene, seed, protein, drug, chemical) and four types of links (PPI, 
PDI, DDI, DTI), graph density is 0.002, diameter or longest path is 6, etc. 

Algorithms were developed using the NetworkX[12] library in Python. The values of the 
centrality measures for the established network are listed for the first 5 and 5 most important 
nodes and are shown in Table III below. The most important genes are MARK1, as shown by 
the results of degree, closeness, and eigenvalue centrality (Table III a,b,d). However, 
considering betweenness centrality (Table III c), the CYP1A1 gene is a more important gene 
than the MARK gene. 

TABLE III  

Results of centrality measures 

 

 𝒗 𝑪𝑫(𝒗) 

1 MARK1 970 

2 MARK3 918 

3 CYP1A1 693 

4 IL6 662 

5 MARK8 412 
 

 𝒗 𝐶஼(𝑣) 

1 MARK1 0.516 

2 MARK3 0.498 

3 Arsenic 0.497 

4 Lipopoly. 0.495 

5 Estradiol 0.494 
 

 𝒗 𝑪𝑩(𝒗) 

1 CYP1A1 906565.1 

2 MARK1 778697.7 

3 IL6 659035.1 

4 MARK3 602836.8 

5 NFKB1 381747.2 
 

 𝒗 𝑪𝑬(𝒗) 

1 MARK1 1 

2 MARK3 0.95 

3 IL6 0.54 

4 CYP1A1 0.48 

5 MARK8 0.40 

(a) (b) (c) (d) 

In the next section, we developed a graph-based protein interaction prediction model 
based on the previously established PPI network using machine learning methods and ran it 
on the data.  

The PPI network we built before had a total of 802 edges or links, and randomly selected 
80 percent (a total of 641) of links as training data and the remaining 161 links as testing 
data.  
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When choosing predictors, we chose CommonNeighbors predictors, Adamic Adar 
predictors based on neighboring vertices in unsupervised learning, and Jaccard coefficient 
predictors based on network topology, and Katz predictors based on pathway information 
between two proteins to predict protein interactions. 

TABLE IV  

Results of machine learning predictors 
 

 𝒔 𝒕 score 

1 5599 
(MARK8) 

5595  
(MARK3) 

32 

2 6774 
(STAT3) 

1432  
(MARK14) 

24 

3 5599 
(MARK8) 

4790  
(NFKB1) 

13 

4 7099  
(TLR4) 

7097   
(TLR2) 

12 

5 7099  
(TLR4) 

5594  
(MARK1) 

10 

 

 𝒔 𝒕 score 

1 998 
(CDC42) 

9043  
(SPAG9) 

1 

2 998 
(CDC42) 

8061  
(FOSL1) 

1 

3 998 
(CDC42) 

6416  
(MAP2K4) 

1 

4 998 
(CDC42) 

5899  
(RALB) 

1 

5 998 
(CDC42) 

5898  
(RALA) 

1 

 

 𝒔 𝒕 score 

1 5599 
(MARK8) 

5595 
(MARK3) 

22.33 

2 6774 
(STAT3) 

1432 
(MARK14) 

16.98 

3 7099 
(MARK8) 

7097 
(NFKB1) 

10.56 

4 5599 
(TLR4) 

4790 
 (TLR2) 

9.22 

5 7099 
(TLR4) 

5594 
(MARK1) 

5.69 

(a) Result using CommonNeighbor predictor (b) Result using Jaccard predictor (c)Result of Adamic Adam predictor 

ROC curves are also used to evaluate how true or false a predictor is. We made our 
algorithms in the Python programming language and developed them using the LinkPred [13] 
library. 

 
 Figure 6. ROC curve 

As can be seen from the ROC curve shown in Figure 6, for the three selected predictors, 
the Common Neighbor predictor predicts slightly more efficiently by considering the 
common neighboring vertices. However, this type of data predicts a certain small percentage, 
so it is concluded that further improvement is necessary. In Figure 6, we have included the 
AUC curve, which is one of the main evaluation metrics to check the performance of our 
classification model. 

5. CONCLUSION 

In a particular disease, a certain number of genes are altered or mutated so that they are 
used for the development of therapeutic and pharmaceutical methods. Echinococcus hydatid 
disease, the subject of our research, has a high prevalence and risk in our country, so it is 
critical to develop appropriate new drugs quickly or to determine whether they can be used 
in combination with drugs used for similar diseases. We conducted this research with the aim 
of identifying important information by creating a graph model on the interaction data of 
genes, proteins, and drugs related to the disease. The experiment determined that the 
important genes of echinococcus are MARK1, MARK3, CYP1A1, and arsenic, 
lipopolysaccharide, and estradiol are among the important chemical ingredients that should 
be included in the drug's composition. 

 

Area Under Roc Curve (AUROC) 
Common Neigh.: 0.011905725890099469 
Adamic Adar:   0.011110691472196408 
Jaccard:   0.006849802269769901 
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APPENDIX 
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Figure 5. PDI network of 21 Echinococcus-related genes 

 

TABLE II  

Details of subgraphs 
Subgraphs Nodes Edges Seeds 
Figure 5a 18 18 2 
Figure 5b 11 10 1 
Figure 5c 10 9 2 
Figure 5d 7 6 1 
Figure 5e 4 3 1 
Figure 5f 3 2 1 
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TABLE V 

Details of selected 21 homo-sapiens genes from NCBI 

 

Gene ID Symbol Aliases Description 
Map 
location 

Ehromo
some 

start_position_on_the
_genomic_accession 

end_position_on_th
e_genomic_accession 

Exon 
count 

1543 CYP1A1 AHH, AHRR, CP11, CYP1, CYPIA1, P1-450, P450-C, P450DX cytochrome P450 family 1 subfamily A member 1 15q24.1 15 74719542 74725528 7 

3119 HLA-DQB1 CELIAC1, HLA-DQB, IDDM1 major histocompatibility complex, class II, DQ beta 1 6p21.32 6 32659467 32666657 6 

3123 HLA-DRB1 DRB1, HLA-DR1B, HLA-DRB, SS1 major histocompatibility complex, class II, DR beta 1 6p21.32 6 32578775 32589848 6 

3586 IL10 CSIF, GVHDS, IL-10A, TGIF, IL10 interleukin 10 1q32.1 1 206767602 206772494 7 

3605 IL17A CTLA-8, CTLA8, IL-17, IL-17A, IL17, ILA17 interleukin 17A 6p12.2 6 52186375 52190638 3 

246778 IL27 IL-27, IL-27AA, IL27p28, IL30, p28, IL27 interleukin 27 16p12.1-p11.2 16 28499362 28526730 6 

3569 IL6 BSF-2, BSF2, CDF, HGF, HSF, IFN-beta-2, IFNB2, IL-6 interleukin 6 7p15.3 7 22725889 22732002 6 

3578 IL9 HP40, IL-9, P40 interleukin 9 5q31.1 5 135892246 135895841 5 

5594 MAPK1 
ERK, ERK-2, ERK2, ERT1, MAPK2, NS13, P42MAPK, PRKM1, 

PRKM2, p38, p40, p41, p41mapk, p42-MAPK 
mitogen-activated protein kinase 1 22q11.22 22 21759657 21867680 9 

1432 MAPK14 
CSBP, CSBP1, CSBP2, CSPB1, EXIP, Mxi2, PRKM14, PRKM15, 

RK, SAPK2A, p38, p38ALPHA 
mitogen-activated protein kinase 14 6p21.31 6 36027711 36122964 22 

5595 MAPK3 
ERK-1, ERK1, ERT2, HS44KDAP, HUMKER1A, P44ERK1, 

P44MAPK, PRKM3, p44-ERK1, p44-MAPK 
mitogen-activated protein kinase 3 16p11.2 16 30114105 30123309 10 

5599 MAPK8 
JNK, JNK-46, JNK1, JNK1A2, JNK21B1/2, PRKM8, SAPK1, 

SAPK1c 
mitogen-activated protein kinase 8 10q11.22 10 48306673 48439360 16 

406938 MIR146A MIRN146, MIRN146A, miR-146a, miRNA146A microRNA 146a 5q33.3 5 160485352 160485450 1 

406947 MIR155 MIRN155, miRNA155, mir-155 microRNA 155 21q21.3 21 25573980 25574044 1 

192343 NEWENTRY  Record to support submission of GeneRIFs for a gene not in Gene (human).         

4790 NFKB1 
CVID12, EBP-1, KBF1, NF-kB, NF-kB1, NF-kappa-B1, NF-kappaB, 

NF-kappabeta, NFKB-p105, NFKB-p50, NFkappaB 
nuclear factor kappa B subunit 1 4q24 4 102501266 102617302 27 

6774 STAT3 ADMIO, ADMIO1, APRF, HIES signal transducer and activator of transcription 3 17q21.2 17 42313324 42388502 24 

6890 TAP1 
ABC17, ABCB2, APT1, D6S114E, PSF-1, PSF1, RING4*0102N, 

TAP1N, TAP1 
transporter 1, ATP binding cassette subfamily B 
member 

6p21.32 6 32845209 32853704 12 

6891 TAP2 ABC18, ABCB3, APT2, D6S217E, PSF-2, PSF2, RING11 
transporter 2, ATP binding cassette subfamily B 
member 

6p21.32 6 32821831 32838739 13 

7097 TLR2 CD282, TIL4 toll like receptor 2 4q31.3 4 153684080 153710643 5 

7099 TLR4 ARMD10, CD284, TLR-4, TOLL toll like receptor 4 9q33.1 9 117704403 117724735 4 


