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Abstract 

This paper introduces a nondestructive method for estimating wear in 
diesel engine parts. Ulaanbaatar Railway, Mongolia's major railway 
company, has utilized Russian-manufactured 2TE116Um series diesel 
locomotives since 2010, following maintenance schedules outlined by the 
manufacturer. However, observations during the initial maintenance 
period from 2010 to 2016 necessitated adjustments to align maintenance 
schedules with Mongolia's unique operating conditions. Assessing diesel 
engine wear and predicting part lifespans based on wear element 
concentrations in engine oil has global applicability. Nonetheless, the 
existing Russian-approved methodology, different chemical compositions 
in diesel engine parts compared to other locomotive manufacturers, poses 
challenges in implementing recent approaches like neural networks (NN) 
for accurate predictive maintenance scheduling. Addressing this 
challenge, our study conducted spectral analysis of engine oil under 
Mongolia's operational conditions, analyzing wear element 
concentrations and their fluctuations. Furthermore, during maintenance 
periods, engine parts were disassembled and measured. Subsequently, 
data were utilized to train a neural network model to predict remaining 
useful life of the parts. Our two-stage neural network model 
demonstrated a remarkable improvement in predictive accuracy 
compared to traditional mathematical models, with an R=0.99, R=0.82 
MSE. This enhanced model accurately assesses component wear, 
optimizing locomotive repair schedules, thereby potentially reducing 
maintenance expenses, and enhancing locomotive performance 
significantly. 

Keywords: wear elements, neural networks, used oil, wear of diesel 
engine parts, Machine Learning (ML), Lubrication Condition Monitoring 
(LCM) 

 

1. INTRODUCTION 

Locomotive maintenance involves utilizing information 
gathered through the monitoring of physical assets to 
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recommend necessary actions. This monitoring process, known as condition monitoring, 
involves regular evaluations of real-time operational conditions to optimize equipment 
performance by using health data to identify deviations or faults in the equipment. 

Various techniques, such as vibration analysis, thermography, acoustic emission, and 
ultrasound, are employed to diagnose signs of wear and tear. Concurrently, lubricant 
monitoring tracks the entire wear and tear process of components, starting from normal 
conditions. Lubrication condition monitoring (LCM) is a pivotal approach that supplements 
predictive and proactive maintenance strategies. It is primarily employed as an initial defense 
mechanism to detect early signs of equipment deterioration, thereby preventing potential 
catastrophic equipment failures [1]. It plays a multifaceted role, serving as an early warning, 
diagnostic, and prognostic tool for machinery. By employing analysis methods such as 
spectral, iron spectrum, electrochemical, etc., LCM guides maintenance timing of the 
machine and replacement of the lubrication oil, offering valuable insights into machinery 
conditions and lubricant health [1]– [5]. At the core of LCM lies the retrieval and examination 
of vital physical and chemical attributes from lubricants, facilitating informed maintenance 
decisions. Among the pivotal techniques for diagnosing faults in mechanical equipment 
within the LCM realm, oil spectrum analysis is highly important [5]– [8]. This approach 
adeptly detects abrasive elements in oil, assesses additive conditions, and gauges oil pollution 
levels; this approach is now recognized as one of the most efficacious methods for LCM. 

One significant research contribution is the work of Passoni et al. [5], where Raman 
spectroscopy was utilized to accurately distinguish automotive lubricants with varying SAE 
specifications. Sejkorov et al. [6] applied Fourier transform infrared spectroscopy (FTIR), 
partial least squares (PLS), and principal component regression (PCR) to predict the kinematic 
viscosity of SAE 140 oil under 100°C wear conditions. Zzeyani et al. [7] investigated the 
degradation of synthetic lubricating oil in diesel vehicles using electronic paramagnetic 
resonance (EPR) and FTIR, emphasizing the efficacy of FTIR in assessing oil quality and 
degradation rate. Zhou et al. [8] developed a model for predicting acid values based on the 
infrared spectrum monitoring method. The American Society for Materials and Testing 
(ASTM) has adopted rotating disc electrode atomic emission spectrometry (RED-AES) as the 
standard test method for determining worn metals and contaminants in lubricants, as outlined 
in ASTM D6595-17 [9]. The essence of the LCM program lies in its fundamental concept: 
evaluating and analyzing information derived from lubricant analysis to produce practical and 
actionable outputs for maintenance decision support [1]. The application of the LCM program 
in maintenance decision-making can be classified into three complementary areas: detection, 
diagnosis, and prognosis [10]. Prognosis entails forecasting the future performance of a 
system by examining its degradation or deviation from the anticipated state during regular 
operations. This study aimed to confirm the occurrence of a fault and assess the wear of diesel 
engine parts to determine the best time for maintenance intervention. For instance, an 
increase in the count of wear elements could serve as a predictor of the remaining useful life 
of a diesel engine [11]. 

Accurately predicting the wear of locomotive diesel engine parts holds significant 
potential for streamlining maintenance strategies, optimizing resource allocation, and 
improving overall operational performance. Traditional approaches to estimating wear often 
hinge on subjective evaluations or empirical models, which may lack precision and resilience. 
Therefore, there is a pressing need for advanced techniques capable of offering more reliable 
predictions. The concentration of wear products presents in used engine oil for locomotives 
has emerged as a potential indicator of the health and wear status of diesel engine 
components. These wear products, encompassing metallic debris and contaminants 
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generated during engine operation, are identifiable through oil analysis. Nonetheless, 
constructing a model that effectively utilizes this information to precisely estimate the 
Remaining Useful Life (RUL) remains a complex undertaking. 

The traditional approach to estimating the Remaining Useful Life (RUL) of a locomotive 
diesel engine often depends on simple mathematical calculations [12]. Nevertheless, these 
conventional methods, which rely on fleet-wide engine wear rates, often demonstrate 
reduced reliability. Consequently, a model capable of precisely evaluating the RUL of a diesel 
engine by utilizing the concentration of wear products in used oil and the operating mileage 
is needed. Tackling this challenge entails harnessing neural networks, a subset of artificial 
intelligence, to create a more resilient and accurate predictive model. Numerous studies have 
explored the utilization of neural network models in evaluating engine performance and 
wear. Manieniyan et al. [13] investigated the influence of neural network models on 
predicting wear in a DI diesel engine using a B20 blend of Methyl Ester of Mahua (MEOM) 
and diesel. In a different approach, Zheng et al. [14] introduced an innovative method 
employing deep neural network techniques to model marine diesel engine performance by 
incorporating virtual sample generation technology. Mohanty et al. [15] concentrated on 
examining the morphological characteristics of wear particles and employed an artificial 
neural network (ANN) model based on intelligence. Rahimi et al. [16] investigated the in-
operando effects of oil metal pollution on diesel engine conditions using extensive datasets 
and Support Vector Machine (SVM) and Radial Basis Function (RBF) models. They reported 
the highest accuracy in forecasting engine conditions when using the cubic polynomial (poly 
3) and RBF kernel functions in SVM and RBF-NN classifiers employing two training methods, 
trainbr and trainlm. For engine condition predictions, the RBF and SVM classifiers achieved 
average accuracies of 99% and 97%, respectively. In their study, Kang et al. [17] introduced 
an innovative model for wear assessment based on support vector regression, which 
incorporates fuzzy uncertainty to account for random behavior in small sample sizes. Can et 
al. [18] employed artificial neural networks to predict the combustion characteristics of a 
single-cylinder diesel engine utilizing various models, such as multilayer perceptron (MLP), 
an adaptive neuro-fuzzy interference system (ANFIS), and a radial basis function network 
(RBFN). Another interesting work on neural networks is used on quadcopter stabilization 
[22]. They present a neural network control model for quadcopter stabilization. A single 
hidden layer network model was estimated to investigate the dynamics of the UAV. A control 
system with a classical PID controller was used to train the neural network model. Notably, 
Prabhu, Avinash, and Amin [19] utilized artificial neural networks for determining and 
optimizing the performance and emission parameters of compression ignition engines using 
alternative gaseous fuels. However, there currently exists a research gap in the specific 
context of addressing diesel engine part wear through neural network methods. 

The literature background can be divided into two main sections: 1) RUL prediction based 
on sensor information. 2) Oil analysis is used to classify whether the engine is in a normal or 
critical condition. However, our objective in this research is to use oil analysis-based RUL 
prediction for engine parts, which is not covered. Therefore, we propose an innovative two-
stage neural network model to predict the RUL of locomotive engine parts. 

2. MATERIALS, METHODS AND MODELING 

The experimental research methodology involved materials, data collection, data 
processing, and an overall modeling approach. The primary focus of the study was to model 
the wear of diesel engine parts based on the amount of wear elements in used oil utilizing 
two core databases. Initially, spectroscopic methods were employed to track the changes in 
wear element concentrations in used oil until the point of oil change. Subsequently, data 
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regarding the diesel engine parts measurements, which explain how much parts are under 
wear after routine maintenance, were collected and analyzed. 

2.1. Experimental setup 

This research involved the examination of the 16ChH26/26 diesel engine, a product of 
the JSC "Kolomensky Zavod," which features 16 cylinders with a power output of 2650 kW. 
The engine's operational manual recommends changing M14G2 motor oil every 50,000 to 
100,000 kilometers based on the chemical and tribological characteristics of the oil. Test oil 
samples were collected during maintenance intervals on locomotive TU-3, which were carried 
out every 15,000 kilometers. 

This research used an iCap 7000+ Inductively Coupled Plasma Optical Emission 
Spectroscopy (ICP OES) device for spectrographic oil analysis. This advanced instrument 
enabled precise and comprehensive examination of the oil samples, contributing to the 
accuracy and reliability of our analytical findings. This equipment functions as a combined 
inductively coupled argon gas plasma and optical emission spectrometer, predominantly 
employed to identify wear metal elements, contaminants in oil, and additive elements in 
lubricants. The instrument utilizes a technique that separates light and transforms it into 
electrical energy through a detector. Its optical design and CID detector were optimized for 
analyzing solid-state substances, enabling the measurement of various elements and 
concentrations across a wide array of sample types. 

2.2. Test procedure 

Diesel engines, recognized for their efficiency and durability, are nonetheless subject to 
wear and deterioration due to operational stresses and environmental conditions. The wearing 
process generates minuscule particles known as wear elements, which become integrated 
into the lubricating oil. Monitoring the concentration of these wear elements in used oil 
provides vital insights into engine wear patterns and degradation mechanisms, aiding in 
pinpointing critical components undergoing wear and estimating overall engine wear. The 
chemical compositions of the material components were analyzed to create a list of controlled 
elements that are necessary for the wear classification algorithm based on small parts. 
Monitoring the concentrations of nine elements, such as (Fe), (Cu), (Sn), (Pb), (Si), (Mg), (Ni), 
(Mo), and (Cr), is crucial for locomotive diesel engines [20]. 

In accordance with established procedures, oil samples were meticulously obtained to 
ensure an accurate representation of the engine's condition; the samples were labeled with 
the corresponding engine mileage, locomotive model, and operating conditions. This rich 
dataset facilitated a detailed analysis of the engine's performance and degradation over time. 
Chankin et al. [22] devised a dynamic model to ascertain wear product concentrations in 
locomotive diesel engine oil, facilitating the monitoring of wear rates during operation. 
Ovcharenko and Minakov [23] developed a mathematical model for wear product 
accumulation in engine oil utilizing an artificial neural network, allowing real-time 
assessment of the technical conditions of D49 diesel engine parts and thereby enhancing the 
repair process. 

2.3. Data collection and Preprocessing 

The extensive data collection process involved gathering pertinent data on diesel engine 
performance and maintenance from operational locomotives equipped with monitoring 
systems that captured various engine parameters. The MSU-TP system provides regular 
monitoring of the engine's technical condition for control, diagnosis, and adjustment. 
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Additionally, oil samples were systematically collected during routine maintenance and repair 
operations. 

To achieve the primary research objective of developing a staged neural network model, 
real data were collected as follows: 1. The concentration of wear elements in diesel engine 
oil, 2. The wear and tear of diesel engine parts. The collected data is subsequently 
preprocessed to train the neural network. 

We acknowledge that there is an existing dataset, but it is crucial to emphasize that our 
dataset has time series features and may differ significantly from open datasets due to factors 
such as data collection methods, sensors used, and the specific locomotive model under 
consideration. We will explicitly mention that the existing dataset is not directly comparable 
to our work because of these differences and most importantly, the lack of time series 
features. We agree that the working conditions of locomotives, including weather conditions, 
play a significant role in the performance and health of the system. In our revised manuscript, 
we provide additional details on how specific working conditions, such as temperature, 
humidity, and environmental factors, impact locomotive performance and consequently, the 
characteristics of our dataset. 

2.3.1. The concentration of wear elements in diesel engine oil 

The experiment included the analysis of 20 engines' oil use through 312 tests conducted 
during various phases, including technical maintenance (TM), routine maintenance (RM), oil 
changes, and when needed. During the routine maintenance of the diesel engine at every 
300,000 kilometers, the oil was changed 3-5 times or at intervals of every 75,000 kilometers 
in accordance with the physical and chemical specifications. For instance, specific test 
outcomes for locomotive diesel engine number 1, comprising mileage and the concentration 
(measured in g/ton) of wear elements as determined through spectral analysis in used oil, can 
be found in Table I. diesel engine oil. 

The total mileage for complete oil change was divided into periods I-IV, and the 
concentration of wear elements (g/ton) and corresponding statistical parameters were 
determined via spectral analysis of the used oil (Figure 1; Table II). 

TABLE I 

Mileage and changes in wear element concentration in used oil samples, g/ton 
Mileage, 
1000 km 

Date Fe Pb Al Cu Cr Oil changed 
Measured by 

unfolding 
0        - 
15 2016.01.14 8 0 5 2 1 - - 
30 2016.02.10 9 0 3 1 1 - - 
45 2016.03.16 24 2 5 2 1 - - 
60 2016.04.10 30 1 2 1 1 - - 
75 2016.05.18 34 2 6 3 2 - - 
90 2016.06.20 37 4 6 4 2 + - 
15 2016.07.25 16 1 3 2 1 - - 
30 2016.09.02 10 0 3 1 1 - - 
45 2016.10.04 20 1 4 3 1 - - 
60 2016.11.10 16 1 3 2 1 - - 
75 2016.12.20 24 1 3 1 1 - - 
90 2017.01.24 30 1 4 2 2 - - 

105 2017.03.04 37 3 6 6 2 + - 
15 2017.04.14 21 1 4 1 1 - - 
30 2017.05.20 27 2 4 2 1 - - 
45 2017.06.02 34 2 3 2 1 - - 
60 2017.06.28 60 4 10 4 1 - - 
75 2017.08.01 67 4 13 4 8 + - 
0         

15 2017.08.30 9 0 3 1 1 - - 
30 2017.09.24 18 2 4 3 2 - - 
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45 2017.10.20 24 2 4 5 2 - - 
60 2017.11.30 29 2 4 3 2 - - 
75 2017.12.24 36 4 6 7 3 - - 
90 2018.01.29 39 4 8 8 5 + + 

Note: (+) indicates no change in oil content and was not measured by unfolding (-) 
 

TABLE II 

Statistical analysis of wear element concentration in used engine oil: Periods I-IV of total mileage 

parametrs 
I II 

Fe Pb Al Cu Cr Fe Pb Al Cu Cr 
Mean 20.12 1.12 3.85 2.03 0.99 30.47 1.84 4.94 3.72 1.67 
Standard Error 1.98 0.22 0.31 0.22 0.14 2.95 0.37 0.41 0.38 0.16 
Median 17.00 1.00 3.00 2.00 1.00 25.50 1.00 4.00 3.00 1.00 
Mode 17.00 1.00 3.00 1.00 1.00 30.00 1.00 3.00 2.00 1.00 
Standard Deviation 11.38 1.24 1.79 1.29 0.82 17.70 2.23 2.48 2.29 0.99 
Sample Variance 129.61 1.55 3.20 1.66 0.68 313.34 4.96 6.17 5.23 0.97 
Kurtosis 0.29 2.74 0.08 2.05 5.37 3.83 11.99 7.45 2.05 2.84 
Skewness 1.04 1.62 0.80 1.53 1.84 1.93 2.99 2.44 1.50 1.69 
Range 42.00 5.00 7.00 5.00 4.00 78.00 12.00 12.00 9.00 4.00 
Minimum 6.00 0.00 1.00 1.00 0.00 10.00 0.00 3.00 1.00 1.00 
Maximum 48.00 5.00 8.00 6.00 4.00 88.00 12.00 15.00 10.00 5.00 
Sum 664 37 127 67 33 1097 66 178 134 60 
Count 33.00 33.00 33.00 33.00 33.00 36.00 36.00 36.00 36.00 36.00 
Largest (1) 48.00 5.00 8.00 6.00 4.00 88.00 12.00 15.00 10.00 5.00 
Smallest (1) 6.00 0.00 1.00 1.00 0.00 10.00 0.00 3.00 1.00 1.00 
Confidence Level (95.0%) 4.04 0.44 0.63 0.46 0.29 5.99 0.75 0.84 0.77 0.33 

Figure 1 and Table 2 visually depict a notable increase in the iron concentration found in 
the used oil samples. The initial period (I) revealed a mean iron concentration of 20.1 g/ton, 
accompanied by a variance of 11.8. Subsequently, by the fourth period (IV), the iron 
concentration had risen to 32.3 g/ton, demonstrating a variance of 13.37 g/ton. 

 
Figure 1. The variation coefficient/changes/in the concentration of wear elements in used oil in periods I-IV of mileage for 

complete oil change; g/ton 

continuation of the TABLE II 

III IV 
Fe Pb Al Cu Cr Fe Pb Al Cu Cr 

34.36 2.08 5.40 4.32 1.92 32.33 2.17 5.17 6.33 2.50 
3.19 0.22 0.50 0.63 0.29 3.68 0.27 0.44 1.28 0.38 

29.00 2.00 5.00 4.00 2.00 29.00 2.00 4.50 4.50 2.00 
21.00 2.00 4.00 4.00 1.00 28.00 2.00 4.00 3.00 2.00 
15.94 1.08 2.48 3.17 1.44 12.74 0.94 1.53 4.42 1.31 

254.24 1.16 6.17 10.06 2.08 162.42 0.88 2.33 19.52 1.73 
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1.49 -0.53 2.87 7.66 13.69 0.83 1.33 0.05 0.87 0.65 
1.44 0.26 1.33 2.53 3.33 1.27 1.21 1.14 1.43 1.15 

60.00 4.00 12.00 15.00 7.00 38.00 3.00 4.00 12.00 4.00 
17.00 0.00 1.00 1.00 1.00 19.00 1.00 4.00 3.00 1.00 
77.00 4.00 13.00 16.00 8.00 57.00 4.00 8.00 15.00 5.00 

859 52 135 108 48 388 26 62 76 30 
25.00 25.00 25.00 25.00 25.00 16.00 16.00 16.00 16.00 16.00 
77.00 4.00 13.00 16.00 8.00 57.00 4.00 8.00 15.00 5.00 
17.00 0.00 1.00 1.00 1.00 19.00 1.00 4.00 3.00 1.00 

6.58 0.44 1.03 1.31 0.59 8.10 0.60 0.97 2.81 0.84 

Univariate regression analysis was carried out to assess the relationship between the 
changes in wear elements (y) within the oil used throughout periods I-IV (x) until the engine 
oil change occurred. This analysis highlighted a potential logarithmic correlation, indicated 
by the equation 

y = 19.33ln(x) + 23.72 (1) 

achieving an R=0.9. 

2.3.2. The wear and tear of diesel engine parts 

The manufacturers of the 16ХН26/26 diesel engine follow the mileage-based repair 
recommendations stipulated by the open carriage manufacturer. These guidelines specify the 
RM 1 repair at 150,000 km, the RM 2 repair at 300,000 km, and the RM 3 repair at 600,000 
km. In this study, we analyzed the wear statistics and residual reserves of specific parts during 
the RM 2 and RM 3 repairs. The wear intensity of diesel was assessed by disassembling the 
engine during the operational periods detailed in Table III. 

TABLE III 

The parameters of wear in diesel engine parts 
Mileage measured 
by disassembling, 
km 

Cylinder 
liner 

Piston 
Pins 

Pin 
connecting 

rod 

Crank 
Main 

journals 

Crank pin 
journals 

Connecting 
rod bronze 

bushing 

Crank pin 
journals 

Bronze 
bushing 

389 0.032 0.022 0.020 0.059 0.030 0.121 0.200 0.147 
358 0.033 0.040 0.023 0.060 0.045 0.111 0.173 0.120 
330 0.025 0.012 0.039 0.031 0.030 0.121 0.176 0.100 
391 0.033 0.024 0.039 0.061 0.048 0.117 0.189 0.155 
333 0.033 0.017 0.021 0.062 0.054 0.108 0.203 0.147 
456 0.056 0.038 0.042 0.016 0.012 0.117 0.185 0.103 
410 0.040 0.032 0.032 0.060 0.049 0.182 0.185 0.188 
350 0.033 0.031 0.028 0.064 0.032 0.168 0.214 0.123 
333 0.032 0.032 0.037 0.049 0.025 0.117 0.191 0.100 
551 0.060 0.026 0.026 0.033 0.029 0.103 0.196 0.133 
551 0.060 0.040 0.042 0.064 0.054 0.182 0.214 0.188 

The findings regarding the wear rate of diesel engine parts revealed that 95% of the parts 
experienced wear ranging from 0.05 mm to 0.06 mm during each maintenance session. 
Additionally, 95% of all the bearing types exhibited wear within the range of 0.17 mm to 
0.21 mm. The residual useful life of these parts was estimated to be between 0.7% and 
0.85%, as determined by comparing the wear rate against the replacement criteria outlined 
in the routine maintenance guidelines. To prepare the collected data for analysis, several pre-
processing steps were executed. These steps were aimed at improving the data quality, 
addressing missing values, and standardizing the dataset. Normalization methods, such as 
scaling or standardization, were applied to ensure that all features were on a comparable 
scale. This process was essential for preventing any specific feature from exerting undue 
influence on the analysis due to its greater magnitude. 

2.4. Results of the traditional approach 

The traditional approach to calculating the remaining useful life of a locomotive's diesel 
engine employs the following mathematical model. The value of the remaining useful life 
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(𝐿ோ௎௅) is calculated from the discrepancy between the full reserve and the current mileage, 
which indicates the wear of diesel engine parts, using the following formula: 

𝐿ோ௎௅ =
𝐺

𝛼 ∙ 𝐾ே
− 𝐿 (2) 

Here, 
𝐺 – permissible wear, g; 
𝛼 – oil exchange coefficient (characterizing the operating conditions of the diesel engine 

and calculated as the arithmetic average of the predicted wear elements for a park of diesel 
locomotives of the same series; t/thousand km), 

𝐾ே – average concentration at the time of forecasting, g/t; 
𝐿 – mileage at the time of forecasting, thousand km. 

The average concentration (𝐾ே) at the time of forecasting was calculated using the 
following formula: 

𝐾ே =
∑ 𝐾௥
ே
௥ୀଵ

𝑁
 (3) 

Here, 
𝐾௥ – the concentration of wear elements in the oil of sample r; 
𝑁 – number of samples taken since diesel repair 

 

 

3. NEURAL NETWORK ARCHITECTURE DESIGN 

The innovative neural network 
model, designed to predict the wear of 
diesel engine parts by analyzing the 
fluctuation in wear product 
concentration within the operational 
oil, is structured as a two-stage 
architecture model (refer to Figure 2).  
The initial stage features a model that 
evaluates the variation in wear product 
concentration within the engine's 
operational oil based on the 
locomotive's operational mileage. This 
first stage is intended for diagnosing 
abrupt changes in the wear rate of 
engine parts and serves as input for the 
subsequent stage. As the object of our 
study was manufactured in Russia, 
wear elements were selected in 
accordance with the Russian GOST 20759 standard. The analysis involved the use of 
diagnostic indicators outlined in the standard. 

The subsequent stage comprises a model that estimates the wear of engine parts, relying 
on the concentration of wear products in the engine's operational oil and the locomotive's 
mileage. The aim of this subsequent stage is to predict the wear of diesel engine parts. While 
the interval for oil changes might vary depending on the locomotive's average daily mileage, 
data collection for the first stage typically spans approximately one month. During the RM 2 
repair period, the wear product concentration analysis of the oil involved 3-5 oil changes. 

Figure 2. Proposed neural Network Architecture 
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However, data for the second stage, concerning part wear, are solely acquired during the RM 
2 and RM 3 repairs, resulting in a longer interval between assessments, occurring 
approximately once every three years.  

a) Non-Linear 
Autoregressive with 
External Input 

 

b) Nonlinear Autoregressive 

 

c) Nonlinear Input‒Output 

 

Figure 3. Neural Network Architectures for comparison 

The study's reported wear of diesel engine parts encompasses Piston Pins (Pp), Bronze 
Bushing (Bb), Crank Main Journals (Cm), Crank Pin Journals (Cp), Cylinder Liner (CL), 
Connecting Rod Bronze Bushing (Cb), and Pin Connecting Rod (Pr). To compare the 
performance of the neural network models, we utilized three different architectures in the 
time series problem domain. a) Nonlinear autoregressive model with external input (NARX) 
[23], b) nonlinear autoregressive (NAR) [24], and c) nonlinear input‒output model [25]. The 
architecture of these models are illustrated in Figure 3. 

3.1. Development and training of the neural network model 

The neural network model was designed and trained using MATLAB 2022 software. The 
neural network toolbox within MATLAB facilitated the creation and execution of the artificial 
neural network simulation (Figure 4). The architecture of the model was meticulously 
structured, taking into account the particular problem of predicting diesel engine 
performance. The specifics regarding the number of layers, neurons per layer, and activation 
functions were determined through a process of experimentation and optimization (TABLE). 
The dataset was divided into 216 samples for training, 47 for validation, and another 47 for 
testing, in accordance with established practices in machine learning. Table IV shows the 
hyperparameters of the neural network. 

TABLE IV 

Hyperparameters of the neural network 
Parameters input 𝜶𝒌, weight 𝜽𝒌, Bias b 
Number of layers 2 
Number of unit for layer 20 
Learning rate 0.031 
Epoch 14 
Activation function sigmoid 

We experimented with multiple hyperparameter variations to determine the most 
effective values for the neural network. Specifically, we focused on exploring the number of 
neurons in the hidden layers (5, 10, 15, 20, 25, and 30) to identify better-performing 
hyperparameters. The training results revealed that the range between 20 and 30 neurons 
yielded the highest mean squared error (MSE) of 0.99. Table 5 shows the effect of the number 
of neurons in the network on the MSE. When too few neurons cannot converge well, after 
20 or more neurons, the model converges well, but adding more neurons does not affect the 
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model. Despite the consistent MSE, we observed differences in learning time across this 
range. Consequently, we determined that 20 neurons were the optimal count. 

 

TABLE V 

Hyperparameters of the neural network 
Number of neurons MSE 

1 0.324 
5 0.831 
10 0.971 
15 0.994 
20 0.997 
25 0.997 
30 0.997 

 

Figure 4. Simulink model of proposed neural network 

The Levenberg–Marquardt algorithm was used for training. This algorithm is memory 
intensive but takes less time. The learning process automatically stops when there is no 
further improvement in generalization, as evident from an increase in the mean squared error 
of the validation sample. 

The training process involved iterative adjustments of the network's weights and biases 
using backpropagation and gradient descent algorithms. The objective was to minimize the 
prediction error and improve the model's accuracy in estimating engine wear. 

3.2. Model Evaluation and Performance Analysis 

After training the neural network model, it was evaluated using the test dataset that was 
not used during the training process. Performance metrics, such as the mean squared error 
(MSE), root mean squared error (RMSE), and coefficient of determination (R-squared), were 
computed to assess the model's accuracy and generalizability. The mean square errors of the 
training, validation, and test sets stabilized after 8 epochs (Figure 5.a). 

The graph shows the MSEs on the training data, the validation data, and the test data. The 
training data is the data that the model is trained on. The validation data is a separate set of 
data that is used to monitor the model's performance during training. The test data is a 
separate set of data that is used to evaluate the model's performance after training is 
complete. The best validation performance is achieved in epoch 8. This means that the 
model's predictions on the validation data were the most accurate at epoch 8. The top left 
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corner of the right image (Figure 5.b) shows the training, validation, test, and all R-squared 
values. 

a)  b)  

Figure 5. Parameters of the trained neural network, a) Training performance, b) Training output vs target 

The R-squared value is a statistical measure that represents the proportion of variance (i.e., 
how spread out the data is) in the dependent variable that is explained by the independent 
variable(s) in a regression model. In this case, the R-squared values appear to be high, which 
suggests that the ANN model is able to explain a large proportion of the variance in the target 
variable. Additionally, various visualizations and plots were generated to analyze the model's 
performance in detail. These included scatter plots of the predicted versus actual remaining 
service life, error distributions, and trend analysis of the model's predictions over time. 

4. RESULTS AND DISCUSSION 

This paper presents a comparative analysis between the results derived from the 
developed MATLAB model and those computed through traditional statistical methods. 
Additionally, the study provides an overview of the relationship between the concentration 
of wear elements in the engine's used oil and the locomotive's operation, assessed using 
conventional methodologies. 

4.1. Results of the MATLAB model 

The Experimental Results section presents the outcomes derived from the application of 
the trained neural network model to the gathered dataset. This section specifically highlights 
instances where the model exhibited accurate predictions regarding the wear of diesel engine 
parts, thereby offering valuable insights for maintenance planning and decision-making. To 
demonstrate the effectiveness of the similar time series architectures, we compare Non-Linear 
Autoregressive with External Input (NARX), Nonlinear Autoregressive (NAR), Nonlinear 
Input-Output models with the same hyperparameter. Performance is measured by regression 
R values, which indicate the correlation between outputs and targets. Lower values are better, 
therefore zero means no error. 

Table 6 shows the results of training on three different architectures. Due to the 
randomness of training initialization, every instance of training yields a different result. 
Therefore, we ran the training 10 times and averaged the regression R values. The results 
reveal little difference between the three different architectures; due to simplicity, we choose 
a simple nonlinear input‒output architecture. 
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TABLE VI 

Comparison of performance for different time series neural network architectures 
Model name Training R Validation R Testing R Training time 

Non-Linear Autoregressive with External Input (NARX) 0.987 0.996 0.997 7 s 
Nonlinear Autoregressive (NAR) 0.996 0.998 0.994 4 s 

Nonlinear Input‒Output 0.997 0.997 0.998 2 s 

The horizontal axes in Figures 6 and 7 indicate locomotive mileage (10 units = 100000 
km scale). The vertical axis of Figure 6 indicates the concentration of wear elements in the 
used oil (g/ton), while the vertical axis of Figure 7 indicates the amount of wear in the parts 
(mm). 

 
Figure 6. Relationship between the concentration of wear elements in the engine's used oil and the locomotive's mileage 

 
Figure 7. Relationship between wear of diesel engine parts and locomotive mileage 

Figure 6 shows the model predictions for the concentration of each wear element based 
on mileage as the input. The model outcomes enable us to forecast future concentrations of 
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each element and facilitate the examination of wear characteristics. Figure 6 shows that the 
wear of the bronze bushing in the diesel engine connecting to the rod outpaces the wear 
observed in other parts of the device. The manufacturer's guidelines specify a wear reserve 
(expressed as a linear amount of wear) of 0.32 mm for this particular component. 
Consequently, the locomotive is expected to reach this wear limit after covering a mileage of 
600,000 km. 

Certain components, such as connecting rod bronze bushings (indicated by the blue and 
yellow curves in Figure 7) and piston sealing rings (represented by the red curve in Figure 7), 
exhibit a notably greater wear intensity than other parts. This heightened wear rate can be 
attributed to the relatively low metal density of these materials, which renders them more 
susceptible to accelerated wear (as depicted in Figure 7). 

4.2. Results of the traditional approach 

 

a)                                                                            b) 

Figure 8. Relationship between wear of diesel engine parts and locomotive mileage. a) RUL vs mileage, b) Concentration 
vs mileage 

Based on these estimations (using Equation 2), the (RUL; Figure 8.a) of the Connecting 
Rod Bronze Bushing is estimated to be at least 630,000 km and at most 810,000 km. It is 
evident from these results that the traditional estimation of the concentration (Figure 8.b) of 
Cb exhibits a greater deviation. 

4.3. Discussion 

The interpretation of the experimental results obtained from evaluating the proposed 
model for predicting the wear of diesel engine parts is now detailed. This analysis, derived 
from the wear product concentration data and corresponding engine part wear, provides 
significant insights into the effectiveness of the model. The collected data showed that the 
proposed two-stage architecture model successfully captured the variations in wear product 
concentration in the engine's working oil. The authors accurately estimated the wear in 
engine parts based on this concentration and the locomotive's mileage, aligning closely with 
observed service life during subsequent repairs. This interpretation affirms that the developed 
model shows great potential for accurately forecasting future trends in wear for diesel 
engines. By continuously monitoring the wear product concentration in the working oil and 
considering the operational mileage, proactive maintenance decisions can be made, thereby 
preventing failures and optimizing the overall maintenance strategy. 

In this section, the model's performance is compared with that of existing techniques for 
wear trend analysis in diesel engines, including statistical approaches, physics-based models, 
and data-driven techniques discussed in prior literature. The results obtained from traditional 
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statistical methods, those calculated by the neural network (NN) model, and the actual test 
results were compared. In contrast to physics-based models that rely heavily on intricate 
knowledge of internal engine mechanisms and properties, the proposed model demonstrated 
competitive performance. Physics-based models often necessitate extensive parameter 
estimation and may not effectively capture the system's dynamic behavior as data-driven 
approaches can. This comparison highlights the strengths of the proposed model, which 
leverages machine learning techniques to adequately model the complex relationships 
between wear product concentration, mileage, and component wear, offering a practical and 
accurate approach for analyzing future trends in wear for diesel engines. This approach 
surpasses the limitations of traditional wear trend estimation techniques. A comparison of 
the training overall performance results of the models yields R=0.99 (shown in Figure 4) and 
0.9 for the classical model results, as shown in equation (1), which indicates that the NN 
model is preferable for predicting maintenance. The UBTZ company does not manufacture 
diesel engine parts. Consequently, during unplanned maintenance of the locomotive, parts 
with varying reserves are replaced and installed in the engine. This limits the accuracy of this 
model in calculating the remaining useful life of the engine. 

5. CONCLUSION 

Comparative analysis demonstrated that the developed model outperforms traditional 
statistical methods, providing more accurate and reliable predictions. The integration of 
machine learning algorithms, especially artificial neural networks, enables the modeling of 
intricate relationships between wear product concentrations, mileage, and component wear. 

This research further revealed that during "Flow Repair-2" maintenance, 95% of the parts 
exhibited wear ranging from 0.05 mm to 0.06 mm, and for all types of bearings, this wear 
ranged from 0.17 mm to 0.21 mm. Compared to the replacement thresholds suggested in 
routine maintenance guidelines, the remaining service life of the parts ranged from 0.7% to 
0.85%. This highlights the remarkable durability of the 16ХН26/26 diesel engine. 

Moreover, this study underscores the importance of data-driven approaches in 
engineering and maintenance practices. The continuous monitoring and assessment of engine 
wear provided by our neural network model can lead to cost reductions, enhanced operational 
efficiency, reduced downtime, and improved environmental sustainability. The ability of the 
model to identify abnormal wear patterns and impending maintenance requirements plays a 
crucial role in ensuring the sustained reliability and longevity of diesel engines. 

 

REFERENCES 

[1]  J. M. Wakiru, L. Pintelon, P. N. Muchiri, and P. K. Chemweno, “A review on lubricant condition 
monitoring information analysis for maintenance decision support,” Mech. Syst. Signal Process., 
vol. 118, pp. 108–132, Mar. 2019, https://doi.org/10.1016/j.ymssp.2018.08.039  

[2]  J. Wakiru, L. Pintelon, P. N. Muchiri, P. K. Chemweno, and S. Mburu, “Toward an innovative 
lubricant condition monitoring strategy for maintenance of aging multiunit systems.,” Reliab. 
Eng. Syst. Saf., vol. 204, p. 107200, Dec. 2020, https://doi.org/10.1016/j.ress.2020.107200  

[3]  Fan, B. Li, S. Feng, J. Mao, and Y.-B. Xie, “Modeling and experimental investigations on the 
relationship between wear debris concentration and wear rate in lubrication systems,” Tribol. 
Int., vol. 109, pp. 114–123, May 2017, https://doi.org/10.1016/j.triboint.2016.12.015  

[4]  S. Yan, B. Ma, X. Wang, J. Chen, and C. Zheng, “Maintenance policy for oil-lubricated systems 
with oil analysis data,” Eksploat. Niezawodn. – Maint. Reliab., vol. 22, no. 3, pp. 455–464, Sep. 
2020, https://doi.org/10.17531/ein.2020.3.8  



https://doi.org/10.58873/sict.v2i1.45  

ICTFocus. Volume 2, Number 1, 2023  Page 39 

[5]  D. D. J. Passoni, M. T. T. Pacheco, and L. Silveira, “Raman spectroscopy for the identification 
of differences in the composition of automobile lubricant oils related to SAE specifications and 
additives,” Instrum. Sci. Technol., vol. 49, no. 2, pp. 164–181, Mar. 2021, 
https://doi.org/10.1080/10739149.2020.1807356  

[6]  M. Sejkorová, M. Kučera, I. Hurtová, and O. Voltr, “Application of FTIR-ATR Spectrometry in 
Conjunction with Multivariate Regression Methods for Viscosity Prediction of Worn-Out Motor 
Oils,” Appl. Sci., vol. 11, no. 9, p. 3842, Apr. 2021, https://doi.org/10.3390/app11093842  

[7]  S. Zzeyani, M. Mikou, J. Naja, and A. Elachhab, “Spectroscopic analysis of synthetic lubricating 
oil,” Tribol. Int., vol. 114, pp. 27–32, Oct. 2017, https://doi.org/10.1016/j.triboint.2017.04.011  

[8]  F. Zhou, K. Yang, D. Li, and X. Shi, “Acid Number Prediction Model of Lubricating Oil Based 
on Mid-Infrared Spectroscopy,” Lubricants, vol. 10, no. 9, p. 205, Aug. 2022, 
https://doi.org/10.3390/lubricants10090205  

[9]  D02 Committee, “Test Method for Determination of Wear Metals and Contaminants in Used 
Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomic Emission 
Spectrometry,” ASTM International. DOI: 10.1520/D6595-22. 

[10]  J. J. Gertler, “Fault Detection and Diagnosis,” in Encyclopedia of Quantitative Risk Analysis and 
Assessment, 1st ed., E. L. Melnick and B. S. Everitt, Eds., Wiley, 2008. DOI: 
10.1002/9780470061596.risk0506. 

[11]  J. Z. Sikorska, M. Hodkiewicz, and L. Ma, “Prognostic modeling options for remaining useful 
life estimation by industry,” Mech. Syst. Signal Process., vol. 25, no. 5, Art. no. 5, Jul. 2011, 
https://doi.org/10.1016/j.ymssp.2010.11.018  

[12]  “Technical diagnostics and prediction of the residual life of the method of spectral analysis of 
oil” GOST20 759 Moscow, 1991. 

[13]  V. Manieniyan, G. Vinodhini, R. Senthilkumar, and S. Sivaprakasam, “Wear element analysis 
using neural networks of a DI diesel engine using biodiesel with exhaust gas recirculation,” 
Energy, vol. 114, pp. 603–612, Nov. 2016, https://doi.org/10.1016/j.enpol.2016.08.040  

[14]  H. Zheng et al., “Modeling and prediction for diesel performance based on deep neural network 
combined with virtual sample,” Sci. Rep., vol. 11, no. 1, p. 16709, Aug. 2021, 
https://doi.org/10.1038/s41598-021-96259-x  

[15]  S. Mohanty, S. Hazra, and S. Paul, “Intelligent prediction of engine failure through 
computational image analysis of wear particle,” Eng. Fail. Anal., vol. 116, p. 104731, Oct. 2020, 
https://doi.org/10.1016/j.engfailanal.2020.104731  

[16]  M. Rahimi, M.-R. Pourramezan, and A. Rohani, “Modeling and classifying the in-operando 
effects of wear and metal contaminations of lubricating oil on diesel engine: A machine learning 
approach,” Expert Syst. Appl., vol. 203, p. 117494, Oct. 2022, 
https://doi.org/10.1016/j.eswa.2022.117494  

[17]  J. Kang, Y. Lu, H. Luo, J. Li, Y. Hou, and Y. Zhang, “Wear assessment model for cylinder liner 
of internal combustion engine under fuzzy uncertainty,” Mech. Ind., vol. 22, p. 29, 2021, 
https://doi.org/10.1051/meca/2021028  

[18]  Ö. Can, T. Baklacioglu, E. Özturk, and O. Turan, “Artificial neural networks modeling of 
combustion parameters for a diesel engine fueled with biodiesel fuel,” Energy, vol. 247, p. 
123473, May 2022, https://doi.org/10.1016/j.energy.2022.123473  

[19]  A. V. Prabhu, A. Alagumalai, and A. Jodat, “Artificial neural networks to predict the 
performance and emission parameters of a compression ignition engine fuelled with diesel and 
preheated biogas–air mixture,” J. Therm. Anal. Calorim., vol. 145, no. 4, pp. 1935–1948, Aug. 
2021, https://doi.org/10.1007/s10973-021-10683-9  

[20]  Ovecharenko, S.M,  Modeling the process of accumulation of wear products in diesel engine oil, 
Vestnik, RGUPS, 2005 (in Russian,  Овчаренко, С. М, Моделирование процесса 
накопления продуктов износа в моторном масле дизеля. in №1. Вестник РГУПС, 2005) 

[21]  P. Baranitharan, K. Ramesh, and R. Sakthivel, “Measurement of performance and emission 
distinctiveness of Aegle marmelos seed cake pyrolysis oil/diesel/TBHQ opus powered in a DI 
diesel engine using ANN and RSM,” Measurement, vol. 144, pp. 366–380, Oct. 2019, 
https://doi.org/10.1016/j.measurement.2019.05.037   

[22]  Gotov, B.-E., Tserendondog, T., Choimaa, L., & Amar, B. (2022). Quadcopter Stabilization using 
Neural Network Model from Collected Data of PID Controller . ICT Focus, 1(1), 10–21. 
https://doi.org/10.58873/sict.v1i1.28 



  https://doi.org/10.58873/sict.v2i1.45 

Page 40  ICTFocus. Volume 2, Number 1, 2023 

 

 

BIOGRAPHIES 

Galbadrakh Sandag graduated in locomotive engineering from the Railway Institute (TZDS) 
with a bachelor degree and obtained a master degree in mechanical engineering from the 
Mechanical Engineering School of MUST. Since 2006, he has been working as a lecturer in 
locomotive and locomotive engineering at the Railway Institute; now, he is the vice president 
of the Railway Institute. 

Naranbaatar Erdenesuren is Ph. D in Mechanical and Automotive engineer (2013) at 
University of Ulsan, Master in Mechatronics/IT at University of Ulsan, Master and Bachelor 
in Mechanical Engineer at MUST 2001, 2005. He is currently a fulltime associate professor 
at the School of Mechanical Engineering and Transportation, Mongolian University of 
Science and Technology. His areas of interest are Mechatronics, robotics, and AI. 

Ariunbayar Samdantsoodol is Ph. D in Computer Science (2017) at Staffordshire University, 
Master and Bachelor in Production Management, Marketing and Production Management at 
MUST 2004, 2002. She is currently a fulltime associate professor at the School of Mechanical 
Engineering and Transportation, Mongolian University of Science and Technology. Her areas 
of interest are Computer Science, Logistics, Transportation, Virtual Enterprise, and 
Operational Management. 

 

[23]  S.A. Billings. "Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and 
Spatiotemporal Domains," Wiley, ISBN 978-1-1199-4359-4, 2013. 

[24]  Francisco Blasques, Siem Jan Koopman & André Lucas (2020) Nonlinear autoregressive models 
with optimality properties, Econometric Reviews, 39:6, 559-578, 
https://doi.org/10.1080/07474938.2019.1701807 

[25]  I. J. Leontaritis and S. A. Billings. "Input-output parametric models of nonlinear systems. Part I: 
Deterministic nonlinear systems." Int'l J of Control 41:303-328, 1985. 


