https://www.ictfocus.org

Predictive Neural Network Modeling for Diesel Engine Part
Wear Assessment via Analysis of Wear Element
Concentration in Used Oil

Galbadrakh Sandag', Naranbaatar Erdenesuren®, Ariunbayar Samdantsoodol’®

'Institute of Railway, Ulaanbaatar, Mongolia

~3Mongolian University of Science and Technology, Ulaanbaatar, Mongolia

https://doi.org/10.58873/sict.v2i1.45

Received: November 15, 2023
Accepted: December 25, 2023
Published: December 30, 2023

Corresponding author: Naranbaatar Erdenesuren

Copyright: © 2023 by the authors. Submitted for
possible open access publication under the terms
and conditions of the Creative Commons
Attribution (CC BY) license.

(https://creativecommons.org/licenses/by/4.0/)

e-mail: denaranbaatar@must.edu.mn

Abstract

This paper introduces a nondestructive method for estimating wear in
diesel engine parts. Ulaanbaatar Railway, Mongolia's major railway
company, has utilized Russian-manufactured 2TE116Um series diesel
locomotives since 2010, following maintenance schedules outlined by the
manufacturer. However, observations during the initial maintenance
period from 2010 to 2016 necessitated adjustments to align maintenance
schedules with Mongolia's unique operating conditions. Assessing diesel
engine wear and predicting part lifespans based on wear element
concentrations in engine oil has global applicability. Nonetheless, the
existing Russian-approved methodology, different chemical compositions
in diesel engine parts compared to other locomotive manufacturers, poses
challenges in implementing recent approaches like neural networks (NN)
for accurate predictive maintenance scheduling. Addressing this
challenge, our study conducted spectral analysis of engine oil under
Mongolia's  operational  conditions, analyzing wear element
concentrations and their fluctuations. Furthermore, during maintenance
periods, engine parts were disassembled and measured. Subsequently,
data were utilized to train a neural network model to predict remaining
useful life of the parts. Our two-stage neural network model
demonstrated a remarkable improvement in predictive accuracy
compared to traditional mathematical models, with an R=0.99, R=0.82
MSE. This enhanced model accurately assesses component wear,
optimizing locomotive repair schedules, thereby potentially reducing
maintenance expenses, and enhancing locomotive performance
significantly.

Keywords: wear elements, neural networks, used oil, wear of diesel
engine parts, Machine Learning (ML), Lubrication Condition Monitoring
(LCM)

1. INTRODUCTION

Locomotive maintenance involves utilizing information
gathered through the monitoring of physical assets to
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recommend necessary actions. This monitoring process, known as condition monitoring,
involves regular evaluations of real-time operational conditions to optimize equipment
performance by using health data to identify deviations or faults in the equipment.

Various techniques, such as vibration analysis, thermography, acoustic emission, and
ultrasound, are employed to diagnose signs of wear and tear. Concurrently, lubricant
monitoring tracks the entire wear and tear process of components, starting from normal
conditions. Lubrication condition monitoring (LCM) is a pivotal approach that supplements
predictive and proactive maintenance strategies. It is primarily employed as an initial defense
mechanism to detect early signs of equipment deterioration, thereby preventing potential
catastrophic equipment failures [1]. It plays a multifaceted role, serving as an early warning,
diagnostic, and prognostic tool for machinery. By employing analysis methods such as
spectral, iron spectrum, electrochemical, etc., LCM guides maintenance timing of the
machine and replacement of the lubrication oil, offering valuable insights into machinery
conditions and lubricant health [1]-[5]. At the core of LCM lies the retrieval and examination
of vital physical and chemical attributes from lubricants, facilitating informed maintenance
decisions. Among the pivotal techniques for diagnosing faults in mechanical equipment
within the LCM realm, oil spectrum analysis is highly important [5]- [8]. This approach
adeptly detects abrasive elements in oil, assesses additive conditions, and gauges oil pollution
levels; this approach is now recognized as one of the most efficacious methods for LCM.

One significant research contribution is the work of Passoni et al. [5], where Raman
spectroscopy was utilized to accurately distinguish automotive lubricants with varying SAE
specifications. Sejkorov et al. [6] applied Fourier transform infrared spectroscopy (FTIR),
partial least squares (PLS), and principal component regression (PCR) to predict the kinematic
viscosity of SAE 140 oil under 100°C wear conditions. Zzeyani et al. [7] investigated the
degradation of synthetic lubricating oil in diesel vehicles using electronic paramagnetic
resonance (EPR) and FTIR, emphasizing the efficacy of FTIR in assessing oil quality and
degradation rate. Zhou et al. [8] developed a model for predicting acid values based on the
infrared spectrum monitoring method. The American Society for Materials and Testing
(ASTM) has adopted rotating disc electrode atomic emission spectrometry (RED-AES) as the
standard test method for determining worn metals and contaminants in lubricants, as outlined
in ASTM D6595-17 [9]. The essence of the LCM program lies in its fundamental concept:
evaluating and analyzing information derived from lubricant analysis to produce practical and
actionable outputs for maintenance decision support [1]. The application of the LCM program
in maintenance decision-making can be classified into three complementary areas: detection,
diagnosis, and prognosis [10]. Prognosis entails forecasting the future performance of a
system by examining its degradation or deviation from the anticipated state during regular
operations. This study aimed to confirm the occurrence of a fault and assess the wear of diesel
engine parts to determine the best time for maintenance intervention. For instance, an
increase in the count of wear elements could serve as a predictor of the remaining useful life
of a diesel engine [11].

Accurately predicting the wear of locomotive diesel engine parts holds significant
potential for streamlining maintenance strategies, optimizing resource allocation, and
improving overall operational performance. Traditional approaches to estimating wear often
hinge on subjective evaluations or empirical models, which may lack precision and resilience.
Therefore, there is a pressing need for advanced techniques capable of offering more reliable
predictions. The concentration of wear products presents in used engine oil for locomotives
has emerged as a potential indicator of the health and wear status of diesel engine
components. These wear products, encompassing metallic debris and contaminants
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generated during engine operation, are identifiable through oil analysis. Nonetheless,
constructing a model that effectively utilizes this information to precisely estimate the
Remaining Useful Life (RUL) remains a complex undertaking.

The traditional approach to estimating the Remaining Useful Life (RUL) of a locomotive
diesel engine often depends on simple mathematical calculations [12]. Nevertheless, these
conventional methods, which rely on fleet-wide engine wear rates, often demonstrate
reduced reliability. Consequently, a model capable of precisely evaluating the RUL of a diesel
engine by utilizing the concentration of wear products in used oil and the operating mileage
is needed. Tackling this challenge entails harnessing neural networks, a subset of artificial
intelligence, to create a more resilient and accurate predictive model. Numerous studies have
explored the utilization of neural network models in evaluating engine performance and
wear. Manieniyan et al. [13] investigated the influence of neural network models on
predicting wear in a DI diesel engine using a B20 blend of Methyl Ester of Mahua (MEOM)
and diesel. In a different approach, Zheng et al. [14] introduced an innovative method
employing deep neural network techniques to model marine diesel engine performance by
incorporating virtual sample generation technology. Mohanty et al. [15] concentrated on
examining the morphological characteristics of wear particles and employed an artificial
neural network (ANN) model based on intelligence. Rahimi et al. [16] investigated the in-
operando effects of oil metal pollution on diesel engine conditions using extensive datasets
and Support Vector Machine (SVM) and Radial Basis Function (RBF) models. They reported
the highest accuracy in forecasting engine conditions when using the cubic polynomial (poly
3) and RBF kernel functions in SVM and RBF-NN classifiers employing two training methods,
trainbr and trainlm. For engine condition predictions, the RBF and SVM classifiers achieved
average accuracies of 99% and 97 %, respectively. In their study, Kang et al. [17] introduced
an innovative model for wear assessment based on support vector regression, which
incorporates fuzzy uncertainty to account for random behavior in small sample sizes. Can et
al. [18] employed artificial neural networks to predict the combustion characteristics of a
single-cylinder diesel engine utilizing various models, such as multilayer perceptron (MLP),
an adaptive neuro-fuzzy interference system (ANFIS), and a radial basis function network
(RBFN). Another interesting work on neural networks is used on quadcopter stabilization
[22]. They present a neural network control model for quadcopter stabilization. A single
hidden layer network model was estimated to investigate the dynamics of the UAV. A control
system with a classical PID controller was used to train the neural network model. Notably,
Prabhu, Avinash, and Amin [19] utilized artificial neural networks for determining and
optimizing the performance and emission parameters of compression ignition engines using
alternative gaseous fuels. However, there currently exists a research gap in the specific
context of addressing diesel engine part wear through neural network methods.

The literature background can be divided into two main sections: 1) RUL prediction based
on sensor information. 2) Oil analysis is used to classify whether the engine is in a normal or
critical condition. However, our objective in this research is to use oil analysis-based RUL
prediction for engine parts, which is not covered. Therefore, we propose an innovative two-
stage neural network model to predict the RUL of locomotive engine parts.

2. MATERIALS, METHODS AND MODELING

The experimental research methodology involved materials, data collection, data
processing, and an overall modeling approach. The primary focus of the study was to model
the wear of diesel engine parts based on the amount of wear elements in used oil utilizing
two core databases. Initially, spectroscopic methods were employed to track the changes in
wear element concentrations in used oil until the point of oil change. Subsequently, data
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regarding the diesel engine parts measurements, which explain how much parts are under
wear after routine maintenance, were collected and analyzed.

2.1. Experimental setup

This research involved the examination of the 16ChH26/26 diesel engine, a product of
the JSC "Kolomensky Zavod," which features 16 cylinders with a power output of 2650 kW.
The engine's operational manual recommends changing M14G2 motor oil every 50,000 to
100,000 kilometers based on the chemical and tribological characteristics of the oil. Test oil
samples were collected during maintenance intervals on locomotive TU-3, which were carried
out every 15,000 kilometers.

This research used an iCap 7000+ Inductively Coupled Plasma Optical Emission
Spectroscopy (ICP OES) device for spectrographic oil analysis. This advanced instrument
enabled precise and comprehensive examination of the oil samples, contributing to the
accuracy and reliability of our analytical findings. This equipment functions as a combined
inductively coupled argon gas plasma and optical emission spectrometer, predominantly
employed to identify wear metal elements, contaminants in oil, and additive elements in
lubricants. The instrument utilizes a technique that separates light and transforms it into
electrical energy through a detector. Its optical design and CID detector were optimized for
analyzing solid-state substances, enabling the measurement of various elements and
concentrations across a wide array of sample types.

2.2. Test procedure

Diesel engines, recognized for their efficiency and durability, are nonetheless subject to
wear and deterioration due to operational stresses and environmental conditions. The wearing
process generates minuscule particles known as wear elements, which become integrated
into the lubricating oil. Monitoring the concentration of these wear elements in used oil
provides vital insights into engine wear patterns and degradation mechanisms, aiding in
pinpointing critical components undergoing wear and estimating overall engine wear. The
chemical compositions of the material components were analyzed to create a list of controlled
elements that are necessary for the wear classification algorithm based on small parts.
Monitoring the concentrations of nine elements, such as (Fe), (Cu), (Sn), (Pb), (Si), (Mg), (Ni),
(Mo), and (Cr), is crucial for locomotive diesel engines [20].

In accordance with established procedures, oil samples were meticulously obtained to
ensure an accurate representation of the engine's condition; the samples were labeled with
the corresponding engine mileage, locomotive model, and operating conditions. This rich
dataset facilitated a detailed analysis of the engine's performance and degradation over time.
Chankin et al. [22] devised a dynamic model to ascertain wear product concentrations in
locomotive diesel engine oil, facilitating the monitoring of wear rates during operation.
Ovcharenko and Minakov [23] developed a mathematical model for wear product
accumulation in engine oil utilizing an artificial neural network, allowing real-time
assessment of the technical conditions of D49 diesel engine parts and thereby enhancing the
repair process.

2.3. Data collection and Preprocessing

The extensive data collection process involved gathering pertinent data on diesel engine
performance and maintenance from operational locomotives equipped with monitoring
systems that captured various engine parameters. The MSU-TP system provides regular
monitoring of the engine's technical condition for control, diagnosis, and adjustment.
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Additionally, oil samples were systematically collected during routine maintenance and repair
operations.

To achieve the primary research objective of developing a staged neural network model,
real data were collected as follows: 1. The concentration of wear elements in diesel engine
oil, 2. The wear and tear of diesel engine parts. The collected data is subsequently
preprocessed to train the neural network.

We acknowledge that there is an existing dataset, but it is crucial to emphasize that our
dataset has time series features and may differ significantly from open datasets due to factors
such as data collection methods, sensors used, and the specific locomotive model under
consideration. We will explicitly mention that the existing dataset is not directly comparable
to our work because of these differences and most importantly, the lack of time series
features. We agree that the working conditions of locomotives, including weather conditions,
play a significant role in the performance and health of the system. In our revised manuscript,
we provide additional details on how specific working conditions, such as temperature,
humidity, and environmental factors, impact locomotive performance and consequently, the
characteristics of our dataset.

2.3.1. The concentration of wear elements in diesel engine oil

The experiment included the analysis of 20 engines' oil use through 312 tests conducted
during various phases, including technical maintenance (TM), routine maintenance (RM), oil
changes, and when needed. During the routine maintenance of the diesel engine at every
300,000 kilometers, the oil was changed 3-5 times or at intervals of every 75,000 kilometers
in accordance with the physical and chemical specifications. For instance, specific test
outcomes for locomotive diesel engine number 1, comprising mileage and the concentration
(measured in g/ton) of wear elements as determined through spectral analysis in used oil, can
be found in Table I. diesel engine oil.

The total mileage for complete oil change was divided into periods I-IV, and the
concentration of wear elements (g/ton) and corresponding statistical parameters were
determined via spectral analysis of the used oil (Figure 1; Table II).

TABLE I

Mileage and changes in wear element concentration in used oil samples, g/ton

%I(I)%afi; Date Fe Pb Al Cu Cr Oil changed M:r??;rdii;y
0 B
15 2016.01.14 8 0 5 2 1
30 2016.02.10 9 0 3 1 1
45 2016.03.16 24 2 5 2 1
60 2016.04.10 30 1 2 1 1
75 2016.05.18 34 2 6 3 2 -
90 2016.06.20 37 4 6 4 2 +
15 2016.07.25 16 1 3 2 1 -
30 2016.09.02 10 0 3 1 1
45 2016.10.04 20 1 4 3 1
60 2016.11.10 16 1 3 2 1
75 2016.12.20 24 1 3 1 1
90 2017.01.24 30 1 4 2 2 -
105 2017.03.04 37 3 6 6 2 +
15 2017.04.14 21 1 4 1 1 -
30 2017.05.20 27 2 4 2 1
45 2017.06.02 34 2 3 2 1
60 2017.06.28 60 4 10 4 1 -
75 2017.08.01 67 4 13 4 8 +
0
15 2017.08.30 9 0 3 1 1
30 2017.09.24 18 2 4 3 2
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45 2017.10.20 24 2 4 5 2 - -
60 2017.11.30 29 2 4 3 2 - -
75 2017.12.24 36 4 6 7 3 - -
90 2018.01.29 39 4 8 8 5 + +

Note: (+) indicates no change in oil content and was not measured by unfolding (-)

TABLE II

Statistical analysis of wear element concentration in used engine oil: Periods I-IV of total mileage

parametrs

|

1l

Fe Pb Al Cu Cr Fe Pb Al Cu Cr
Mean 20.12 1.12 3.85 2.03 0.99 30.47 1.84 4.94 3.72 1.67
Standard Error 1.98 0.22 0.31 0.22 0.14 2.95 0.37 0.41 0.38 0.16
Median 17.00 1.00 3.00 2.00 1.00 25.50 1.00 4.00 3.00 1.00
Mode 17.00 1.00 3.00 1.00 1.00 30.00 1.00 3.00 2.00 1.00
Standard Deviation 11.38 1.24 1.79 1.29 0.82 17.70 2.23 2.48 2.29 0.99
Sample Variance 129.61 1.55 3.20 1.66 0.68 313.34 4.96 6.17 5.23 0.97
Kurtosis 0.29 2.74 0.08 2.05 5.37 3.83 11.99 7.45 2.05 2.84
Skewness 1.04 1.62 0.80 1.53 1.84 1.93 2.99 2.44 1.50 1.69
Range 42.00 5.00 7.00 5.00 4.00 78.00 12.00 12.00 9.00 4.00
Minimum 6.00 0.00 1.00 1.00 0.00 10.00 0.00 3.00 1.00 1.00
Maximum 48.00 5.00 8.00 6.00 4.00 88.00 12.00 15.00 10.00 5.00
Sum 664 37 127 67 33 1097 66 178 134 60
Count 33.00 33.00 33.00 33.00 33.00 36.00 36.00 36.00 36.00 36.00
Largest (1) 48.00 5.00 8.00 6.00 4.00 88.00 12.00 15.00 10.00 5.00
Smallest (1) 6.00 0.00 1.00 1.00 0.00 10.00 0.00 3.00 1.00 1.00
Confidence Level (95.0%) 4.04 0.44 0.63 0.46 0.29 5.99 0.75 0.84 0.77 0.33

Figure 1 and Table 2 visually depict a notable increase in the iron concentration found in
the used oil samples. The initial period (I) revealed a mean iron concentration of 20.1 g/ton,
accompanied by a variance of 11.8. Subsequently, by the fourth period (IV), the iron
concentration had risen to 32.3 g/ton, demonstrating a variance of 13.37 g/ton.
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Figure 1. The variation coefficient/changes/in the concentration of wear elements in used oil in periods I-IV of mileage for

continuation of the TABLE II

complete oil change; g/ton

111 I\

Fe Pb Al Cu Cr Fe Pb Al Cu Cr
34.36 2.08 5.40 4.32 1.92 32.33 2.17 5.17 6.33 2.50
3.19 0.22 0.50 0.63 0.29 3.68 0.27 0.44 1.28 0.38
29.00 2.00 5.00 4.00 2.00 29.00 2.00 4.50 4.50 2.00
21.00 2.00 4.00 4.00 1.00 28.00 2.00 4.00 3.00 2.00
15.94 1.08 2.48 3.17 1.44 12.74 0.94 1.53 4.42 1.31
254.24 1.16 6.17 10.06 2.08 162.42 0.88 2.33 19.52 1.73
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1.49 -0.53 2.87 7.66 13.69 0.83 1.33 0.05 0.87 0.65
1.44 0.26 1.33 2.53 3.33 1.27 1.21 1.14 1.43 1.15
60.00 4.00 12.00 15.00 7.00 38.00 3.00 4.00 12.00 4.00
17.00 0.00 1.00 1.00 1.00 19.00 1.00 4.00 3.00 1.00
77.00 4.00 13.00 16.00 8.00 57.00 4.00 8.00 15.00 5.00
859 52 135 108 48 388 26 62 76 30
25.00 25.00 25.00 25.00 25.00 16.00 16.00 16.00 16.00 16.00
77.00 4.00 13.00 16.00 8.00 57.00 4.00 8.00 15.00 5.00
17.00 0.00 1.00 1.00 1.00 19.00 1.00 4.00 3.00 1.00
6.58 0.44 1.03 1.31 0.59 8.10 0.60 0.97 2.81 0.84

Univariate regression analysis was carried out to assess the relationship between the
changes in wear elements (y) within the oil used throughout periods I-1V (x) until the engine
oil change occurred. This analysis highlighted a potential logarithmic correlation, indicated
by the equation

y = 19.33In(x) + 23.72 (1)

achieving an R=0.9.
2.3.2. The wear and tear of diesel engine parts

The manufacturers of the 16XH26/26 diesel engine follow the mileage-based repair
recommendations stipulated by the open carriage manufacturer. These guidelines specify the
RM 1 repair at 150,000 km, the RM 2 repair at 300,000 km, and the RM 3 repair at 600,000
km. In this study, we analyzed the wear statistics and residual reserves of specific parts during
the RM 2 and RM 3 repairs. The wear intensity of diesel was assessed by disassembling the
engine during the operational periods detailed in Table III.

TABLE 1T
The parameters of wear in diesel engine parts

Mlleage measqred Cylinder Piston Pin . Crar)k Crank pin Connecting Crank pin Bronze

by disassembling, . . connecting Main ; rod bronze . ;

K liner Pins rod journals journals bushing journals bushing
389 0.032 0.022 0.020 0.059 0.030 0.121 0.200 0.147
358 0.033 0.040 0.023 0.060 0.045 0.111 0.173 0.120
330 0.025 0.012 0.039 0.031 0.030 0.121 0.176 0.100
391 0.033 0.024 0.039 0.061 0.048 0.117 0.189 0.155
333 0.033 0.017 0.021 0.062 0.054 0.108 0.203 0.147
456 0.056 0.038 0.042 0.016 0.012 0.117 0.185 0.103
410 0.040 0.032 0.032 0.060 0.049 0.182 0.185 0.188
350 0.033 0.031 0.028 0.064 0.032 0.168 0.214 0.123
333 0.032 0.032 0.037 0.049 0.025 0.117 0.191 0.100
551 0.060 0.026 0.026 0.033 0.029 0.103 0.196 0.133
551 0.060 0.040 0.042 0.064 0.054 0.182 0.214 0.188

The findings regarding the wear rate of diesel engine parts revealed that 95% of the parts
experienced wear ranging from 0.05 mm to 0.06 mm during each maintenance session.
Additionally, 95% of all the bearing types exhibited wear within the range of 0.17 mm to
0.21 mm. The residual useful life of these parts was estimated to be between 0.7% and
0.85%, as determined by comparing the wear rate against the replacement criteria outlined
in the routine maintenance guidelines. To prepare the collected data for analysis, several pre-
processing steps were executed. These steps were aimed at improving the data quality,
addressing missing values, and standardizing the dataset. Normalization methods, such as
scaling or standardization, were applied to ensure that all features were on a comparable
scale. This process was essential for preventing any specific feature from exerting undue
influence on the analysis due to its greater magnitude.

2.4. Results of the traditional approach

The traditional approach to calculating the remaining useful life of a locomotive's diesel
engine employs the following mathematical model. The value of the remaining useful life
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(Lgyy) is calculated from the discrepancy between the full reserve and the current mileage,
which indicates the wear of diesel engine parts, using the following formula:

G
Lpyy = m -L )
Here,

G — permissible wear, g;

a — oil exchange coefficient (characterizing the operating conditions of the diesel engine
and calculated as the arithmetic average of the predicted wear elements for a park of diesel
locomotives of the same series; t/thousand km),

Ky —average concentration at the time of forecasting, g/t;

L — mileage at the time of forecasting, thousand km.

The average concentration (Ky) at the time of forecasting was calculated using the
following formula:
CIYLK,

Ky = 2L ()

Here,
K, — the concentration of wear elements in the oil of sample r;
N — number of samples taken since diesel repair

3. NEURAL NETWORK ARCHITECTURE DESIGN

The innovative neural network
model, designed to predict the wear of
diesel engine parts by analyzing the
fluctuation in wear  product
concentration within the operational
oil, is structured as a two-stage
architecture model (refer to Figure 2).
The initial stage features a model that
evaluates the variation in wear product
concentration within the engine's _
operational oil based on the OO0 0000DH RO EE
locomotive's operational mileage. This 25 24 = 2 25 a2 25 e 2 B B = = = o B 2 A
first stage is intended for diagnosing :
abrupt changes in the wear rate of 1
engine parts and serves as input for the I
subsequent stage. As the object of our
study was manufactured in Russia,
wear elements were selected in
accordance with the Russian GOST 20759 standard. The analysis involved the use of
diagnostic indicators outlined in the standard.

Figure 2. Proposed neural Network Architecture

The subsequent stage comprises a model that estimates the wear of engine parts, relying
on the concentration of wear products in the engine's operational oil and the locomotive's
mileage. The aim of this subsequent stage is to predict the wear of diesel engine parts. While
the interval for oil changes might vary depending on the locomotive's average daily mileage,
data collection for the first stage typically spans approximately one month. During the RM 2
repair period, the wear product concentration analysis of the oil involved 3-5 oil changes.
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However, data for the second stage, concerning part wear, are solely acquired during the RM
2 and RM 3 repairs, resulting in a longer interval between assessments, occurring
approximately once every three years.

a) Non-Linear ‘ e % ‘ _
Autoregressive with x(t) C? — : O y(@® = fx(t-1)....x(t-d),

External Input y(t-1),...y(t-d))

J/

b) Nonlinear Autoregressive 7~ { >4 ‘ y@® = fy(t-1)...y(t-d))

* 4

¢) Nonlinear Input-Output x(t) 09 } i O y(®) = f(x(t-1),...x(t-d))

Figure 3. Neural Network Architectures for comparison

The study's reported wear of diesel engine parts encompasses Piston Pins (Pp), Bronze
Bushing (Bb), Crank Main Journals (Cm), Crank Pin Journals (Cp), Cylinder Liner (CL),
Connecting Rod Bronze Bushing (Cb), and Pin Connecting Rod (Pr). To compare the
performance of the neural network models, we utilized three different architectures in the
time series problem domain. a) Nonlinear autoregressive model with external input (NARX)
[23], b) nonlinear autoregressive (NAR) [24], and c) nonlinear input—output model [25]. The
architecture of these models are illustrated in Figure 3.

3.1. Development and training of the neural network model

The neural network model was designed and trained using MATLAB 2022 software. The
neural network toolbox within MATLAB facilitated the creation and execution of the artificial
neural network simulation (Figure 4). The architecture of the model was meticulously
structured, taking into account the particular problem of predicting diesel engine
performance. The specifics regarding the number of layers, neurons per layer, and activation
functions were determined through a process of experimentation and optimization (TABLE).
The dataset was divided into 216 samples for training, 47 for validation, and another 47 for
testing, in accordance with established practices in machine learning. Table IV shows the
hyperparameters of the neural network.

TABLE IV

Hyperparameters of the neural network
Parameters input &y, weight 8, Bias b
Number of layers 2
Number of unit for layer 20
Learning rate 0.031
Epoch 14
Activation function sigmoid

We experimented with multiple hyperparameter variations to determine the most
effective values for the neural network. Specifically, we focused on exploring the number of
neurons in the hidden layers (5, 10, 15, 20, 25, and 30) to identify better-performing
hyperparameters. The training results revealed that the range between 20 and 30 neurons
yielded the highest mean squared error (MSE) of 0.99. Table 5 shows the effect of the number
of neurons in the network on the MSE. When too few neurons cannot converge well, after
20 or more neurons, the model converges well, but adding more neurons does not affect the
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model. Despite the consistent MSE, we observed differences in learning time across this
range. Consequently, we determined that 20 neurons were the optimal count.

TABLEV
Hyperparameters of the neural network
Number of neurons MSE

1 0.324
5 0.831
10 0.971
15 0.994
20 0.997
25 0.997
30 0.997

-

Time Delay Neural Network

y2

0.0653|
0.07415] 4@

Function Fitting Neural Network 0.0293|

0.06336|
» 0.0967|

0.3551

0.2259
0.2664|

Figure 4. Simulink model of proposed neural network

The Levenberg—Marquardt algorithm was used for training. This algorithm is memory
intensive but takes less time. The learning process automatically stops when there is no
further improvement in generalization, as evident from an increase in the mean squared error
of the validation sample.

The training process involved iterative adjustments of the network's weights and biases
using backpropagation and gradient descent algorithms. The objective was to minimize the
prediction error and improve the model's accuracy in estimating engine wear.

3.2. Model Evaluation and Performance Analysis

After training the neural network model, it was evaluated using the test dataset that was
not used during the training process. Performance metrics, such as the mean squared error
(MSE), root mean squared error (RMSE), and coefficient of determination (R-squared), were
computed to assess the model's accuracy and generalizability. The mean square errors of the
training, validation, and test sets stabilized after 8 epochs (Figure 5.a).

The graph shows the MSEs on the training data, the validation data, and the test data. The
training data is the data that the model is trained on. The validation data is a separate set of
data that is used to monitor the model's performance during training. The test data is a
separate set of data that is used to evaluate the model's performance after training is
complete. The best validation performance is achieved in epoch 8. This means that the
model's predictions on the validation data were the most accurate at epoch 8. The top left
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corner of the right image (Figure 5.b) shows the training, validation, test, and all R-squared
values.

Best Validation Performance is 33.0397 at epoch 8
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Figure 5. Parameters of the trained neural network, a) Training performance, b) Training output vs target

The R-squared value is a statistical measure that represents the proportion of variance (i.e.,
how spread out the data is) in the dependent variable that is explained by the independent
variable(s) in a regression model. In this case, the R-squared values appear to be high, which
suggests that the ANN model is able to explain a large proportion of the variance in the target
variable. Additionally, various visualizations and plots were generated to analyze the model's
performance in detail. These included scatter plots of the predicted versus actual remaining
service life, error distributions, and trend analysis of the model's predictions over time.

4. RESULTS AND DISCUSSION

This paper presents a comparative analysis between the results derived from the
developed MATLAB model and those computed through traditional statistical methods.
Additionally, the study provides an overview of the relationship between the concentration
of wear elements in the engine's used oil and the locomotive's operation, assessed using
conventional methodologies.

4.1. Results of the MATLAB model

The Experimental Results section presents the outcomes derived from the application of
the trained neural network model to the gathered dataset. This section specifically highlights
instances where the model exhibited accurate predictions regarding the wear of diesel engine
parts, thereby offering valuable insights for maintenance planning and decision-making. To
demonstrate the effectiveness of the similar time series architectures, we compare Non-Linear
Autoregressive with External Input (NARX), Nonlinear Autoregressive (NAR), Nonlinear
Input-Output models with the same hyperparameter. Performance is measured by regression
R values, which indicate the correlation between outputs and targets. Lower values are better,
therefore zero means no error.

Table 6 shows the results of training on three different architectures. Due to the
randomness of training initialization, every instance of training yields a different result.
Therefore, we ran the training 10 times and averaged the regression R values. The results
reveal little difference between the three different architectures; due to simplicity, we choose
a simple nonlinear input—output architecture.
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TABLE VI
Comparison of performance for different time series neural network architectures
Model name Training R Validation R Testing R Training time
Non-Linear Autoregressive with External Input (NARX) 0.987 0.996 0.997 7s
Nonlinear Autoregressive (NAR) 0.996 0.998 0.994 4s
Nonlinear Input—Output 0.997 0.997 0.998 2s

The horizontal axes in Figures 6 and 7 indicate locomotive mileage (10 units = 100000
km scale). The vertical axis of Figure 6 indicates the concentration of wear elements in the
used oil (g/ton), while the vertical axis of Figure 7 indicates the amount of wear in the parts
(mm).
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Figure 6. Relationship between the concentration of wear elements in the engine's used oil and the locomotive's mileage
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Figure 7. Relationship between wear of diesel engine parts and locomotive mileage

Figure 6 shows the model predictions for the concentration of each wear element based
on mileage as the input. The model outcomes enable us to forecast future concentrations of
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each element and facilitate the examination of wear characteristics. Figure 6 shows that the
wear of the bronze bushing in the diesel engine connecting to the rod outpaces the wear
observed in other parts of the device. The manufacturer's guidelines specify a wear reserve
(expressed as a linear amount of wear) of 0.32 mm for this particular component.
Consequently, the locomotive is expected to reach this wear limit after covering a mileage of
600,000 km.

Certain components, such as connecting rod bronze bushings (indicated by the blue and
yellow curves in Figure 7) and piston sealing rings (represented by the red curve in Figure 7),
exhibit a notably greater wear intensity than other parts. This heightened wear rate can be
attributed to the relatively low metal density of these materials, which renders them more
susceptible to accelerated wear (as depicted in Figure 7).

4.2. Results of the traditional approach
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Figure 8. Relationship between wear of diesel engine parts and locomotive mileage. a) RUL vs mileage, b) Concentration

vs mileage

Based on these estimations (using Equation 2), the (RUL; Figure 8.a) of the Connecting
Rod Bronze Bushing is estimated to be at least 630,000 km and at most 810,000 km. It is
evident from these results that the traditional estimation of the concentration (Figure 8.b) of
Cb exhibits a greater deviation.

4.3. Discussion

The interpretation of the experimental results obtained from evaluating the proposed
model for predicting the wear of diesel engine parts is now detailed. This analysis, derived
from the wear product concentration data and corresponding engine part wear, provides
significant insights into the effectiveness of the model. The collected data showed that the
proposed two-stage architecture model successfully captured the variations in wear product
concentration in the engine's working oil. The authors accurately estimated the wear in
engine parts based on this concentration and the locomotive's mileage, aligning closely with
observed service life during subsequent repairs. This interpretation affirms that the developed
model shows great potential for accurately forecasting future trends in wear for diesel
engines. By continuously monitoring the wear product concentration in the working oil and
considering the operational mileage, proactive maintenance decisions can be made, thereby
preventing failures and optimizing the overall maintenance strategy.

In this section, the model's performance is compared with that of existing techniques for
wear trend analysis in diesel engines, including statistical approaches, physics-based models,
and data-driven techniques discussed in prior literature. The results obtained from traditional
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statistical methods, those calculated by the neural network (NN) model, and the actual test
results were compared. In contrast to physics-based models that rely heavily on intricate
knowledge of internal engine mechanisms and properties, the proposed model demonstrated
competitive performance. Physics-based models often necessitate extensive parameter
estimation and may not effectively capture the system's dynamic behavior as data-driven
approaches can. This comparison highlights the strengths of the proposed model, which
leverages machine learning techniques to adequately model the complex relationships
between wear product concentration, mileage, and component wear, offering a practical and
accurate approach for analyzing future trends in wear for diesel engines. This approach
surpasses the limitations of traditional wear trend estimation techniques. A comparison of
the training overall performance results of the models yields R=0.99 (shown in Figure 4) and
0.9 for the classical model results, as shown in equation (1), which indicates that the NN
model is preferable for predicting maintenance. The UBTZ company does not manufacture
diesel engine parts. Consequently, during unplanned maintenance of the locomotive, parts
with varying reserves are replaced and installed in the engine. This limits the accuracy of this
model in calculating the remaining useful life of the engine.

5. CONCLUSION

Comparative analysis demonstrated that the developed model outperforms traditional
statistical methods, providing more accurate and reliable predictions. The integration of
machine learning algorithms, especially artificial neural networks, enables the modeling of
intricate relationships between wear product concentrations, mileage, and component wear.

This research further revealed that during "Flow Repair-2" maintenance, 95% of the parts
exhibited wear ranging from 0.05 mm to 0.06 mm, and for all types of bearings, this wear
ranged from 0.17 mm to 0.21 mm. Compared to the replacement thresholds suggested in
routine maintenance guidelines, the remaining service life of the parts ranged from 0.7% to
0.85%. This highlights the remarkable durability of the 16XH26/26 diesel engine.

Moreover, this study underscores the importance of data-driven approaches in
engineering and maintenance practices. The continuous monitoring and assessment of engine
wear provided by our neural network model can lead to cost reductions, enhanced operational
efficiency, reduced downtime, and improved environmental sustainability. The ability of the
model to identify abnormal wear patterns and impending maintenance requirements plays a
crucial role in ensuring the sustained reliability and longevity of diesel engines.
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