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Abstract

In this paper, we propose utilizing the CLOS network architecture
to replace traditional linear layers in deep learning models, including
transformers. The CLOS network, commonly used in networking
systems, is adapted to neural networks to reduce parameter sizes
while maintaining model performance. Our experiments show that
the CLOS network achieves the same accuracy and loss as the
conventional linear layer, but with fewer parameters. However, this
efficiency comes at the cost of increased processing time, which
Despite this trade-off, the CLOS network

can be an effective alternative for parameter reduction in various

is 1.5x to 3x slower.

architectures, including large models like transformers.
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rameter decrease.

(https://creativecommons.org/licenses/by/4.0/).

1. INTRODUCTION

Linear layers are fundamental building blocks of modern deep learning architectures,
including transformers, convolutional neural networks, and fully connected networks. De-
spite their simplicity and wide usage, linear layers can contribute to significant model
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size, which can be a limiting factor in memory-constrained environments or when deploy-
ing models at scale. Addressing this issue by reducing the number of parameters while
maintaining model performance has become an active area of research.

The CLOS network, initially designed for efficient communication in high-performance
networking systems, can potentially replace linear layers in neural networks. The CLOS
architecture features a multi-stage interconnection of more miniature switches, which can
be adapted to neural network designs to reduce the number of trainable parameters. This
approach promises to make neural networks memory-efficient while maintaining compa-
rable accuracy and loss performance.

This work proposes replacing conventional linear layers with a CLOS network-based
architecture across different neural network models, including transformers. Our experi-
mental results demonstrate that the CLOS network can significantly reduce the number of
parameters in these models without compromising performance metrics such as accuracy
and loss. However, this reduction comes at the cost of increased computational time, with
our findings showing a 1.5x to 3x slower processing time compared to traditional linear
layers.

This paper is organized as follows: Section 2 reviews related work on parameter-
efficient neural network designs. Section 3 describes the implementation of the CLOS
network within neural network architectures. Section 4 presents the experimental setup
and results. Finally, Section 5 discusses the findings and potential future research direc-
tions.

2. Related work

Parameter Reduction and Compression Techniques: Methods like pruning and quan-
tization reduce neural network size while maintaining accuracy, as in “Deep Compression”
by Han et al. 6], which removes less essential weights, and Jacob et al.’s [11] quantization
for hardware-constrained deployment. These focus on compression rather than architec-
tural changes like CLOS networks. Relatedly, neural network compression includes Hinton
et al.’s [7] knowledge distillation to transfer performance from large to small models, and
Howard et al.’s [8] MobileNets for lightweight convolutional architectures, offering insights
applicable to CLOS strategies. Sparse networks and pruning, such as Zhou et al.’s [24]
filter pruning for efficient convnets and Louizos et al.’s [13| LO regularization for sparsity,
complement this by creating models with fewer parameters while sustaining performance,
potentially enhancing CLOS networks.

Efficient Architectures and Alternatives: Efficient architectures like Szegedy et al.’s
[18] Inception and Iandola et al.’s [10] SqueezeNet use factorized convolutions for high
performance with reduced parameters, similar to CLOS for efficiency. Alternatives to
fully connected layers, including Sridhar et al.’s [17] random projections and low-rank
factorization, cut costs in dense layers, aligning with CLOS as substitutes. Structured
matrices, per Sindhwani et al.’s [16] approximations (e.g., circulant, Toeplitz) and Cheng
et al.’s [4] circulant projections for redundancy exploration, reduce complexity in fully
connected layers, mirroring CLOS goals. Weight sharing and low-rank decompositions,
such as Zhang et al.’s |3] attention with fusion for model size reduction and Novikov et
al.’s [14] tensor decompositions for compression, provide efficient alternatives to linear
layers like CLOS.

Memory Efficiency and Dynamic Methods: Memory-efficient methods include Chen
et al.’s [2] sub-linear memory training and Huang et al.’s |9] CondenseNet for dynamic
connection learning, offering strategies combinable with CLOS. Neural architecture search
(NAS) for efficient models, like Tan et al.’s [19] EfficientNet for balanced scaling and Cai et
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al.’s [1| ProxylessNAS for hardware optimization, provides insights for comparing CLOS
overhead to traditional layers.

Applications to Advanced Models and Acceleration: Applying CLOS networks to ma-
chine learning reduces communication and parameters for fast inference, showing promise
in adapting traditional architectures for neural efficiency. For Transformers, Vaswani et
al.’s [21] self-attention architecture could benefit from CLOS to cut dense layer demands,
while Dehghani et al.’s [5] Universal Transformers use shared weights for efficiency, relat-
ing to CLOS enhancements. Acceleration techniques include Wang et al.’s [22] SkipNet
for dynamic layer skipping to reduce computation, and Ratul et al.’s [15] analysis of
frameworks for faster inference, paralleling CLOS trade-offs in processing time.

3. Proposed Method

We propose a novel implementation of the CLOS network architecture for neural
networks, which we call the CLOS Layer. This approach aims to reduce computational
complexity while maintaining model expressiveness.

3.1. CLOS Layer Architecture

The CLOS Layer is designed as a three-stage network, inspired by the CLOS network
topology used in telecommunications. It consists of input, middle, and output switches,
represented by weight matrices Wy, W5, and W3 respectively.

Figure 1. The CLOS Transformer model architecture builds on the standard Transformer
design. In a typical Transformer, the attention mechanisms in the encoder and decoder are
very similar. Multi-head attention is then expanded using QKV projections and a feed-forward
(dense) layer. Each of these QKV projections and the output dense layer consists of linear
transformations that encode and store knowledge about the input information. The right side
of the figure illustrates the CLOS layer, which replaces the components described in the
algorithm section.

In Figure 1 represents Multi-head attention based transformer encoder and decoder
model. We illustrated decoders Multi-head attention’s Query, Key and Value gates and
replaced by CLOS layer. Moreover, we can replace each linear layer of transformer based
model including dense layers.

3.2. Algorithm
The forward pass of the CLOS Layer is defined as follows:

1. Input: Tensor x € RE*XN where B is batch size, C' is number of channels (2 or
3), and N is input features
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2. Reshape x into (b;,, b;) blocks

3. Compute first stage: x1 = xW7 + by

4. Compute second stage: xo = x1Ws + by

5. Compute third stage: y = xoW3 + b3

6. Reshape y to (B, C, M), where M is output features

7. Output: Tensor y € RBXO*M

Where:
Py Wl 6 Rbin ><b1 ng
° W2 c Rblxbszg

W3 c Rb2 %03 Xbout

b1, by, bs are bias vectors (if used)

bin, b1, ba, b, by are switch sizes determined by factorizing input and output feature
dimensions

The algorithm supports 2D and 3D inputs, adapting the tensor operations accordingly.

3.3. Complexity Analysis and Non-blocking

The time complexity of the CLOS Layer is O(N - max(b;,, b1, b2, b3, bout)), which is
lower than the O(N?) complexity of a standard fully connected layer when the switch
sizes are chosen appropriately.

Non-blocking situation: CLOS networks are a type of multistage switching network
commonly used in high-performance computing and telecommunications. Named after
Charles CLOS, who introduced the concept in 1953, these networks are designed to be
non-blocking, meaning that any unused input port can always be connected to any unused
output port, regardless of the network’s current state.

The non-blocking property of a CLOS network depends on the number of switches in
the middle stage. For a network to be strictly non-blocking, the number of middle-stage
switches (m) must satisfy the following equation:

m >2n—1 (1)
Where:
m - is the number of switches in the middle stage;
n - is the number of input/output ports on each switch in the input and output
stages;

The following equation ensures sufficient paths through the network to accommodate
all possible input-output connections without blocking. The parameter count for a stan-
dard dense linear layer with input dimension d;, and output dimension dg, is simply:

Paramsgense = din * dout.- (2)

In contrast, the proposed CLOS layer adopts a three-stage structure with a middle dimen-
sion m and k switches per stage (where k is typically chosen as k = [max(diy, dout)/m|
to ensure connectivity).
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The total number of parameters in the CLOS layer is:

Paramscros = k- m - (din + 2m + doyt). (3)

This can also be expressed explicitly as:
Paramscros = k- (din - m +m - m 4+ m - doy)- (4)

By selecting a small middle dimension m < min(d,, doyt), the CLOS layer achieves
substantial parameter reduction compared to the dense baseline while retaining expressive
capacity through its multi-stage routing. Calculation of CLOS parameters shown in Fig.
2

3.4. Implementation Detalils

The CLOS Layer has been implemented as a custom PyTorch module, leveraging the
efficiency of advanced tensor operations, particularly the einsum function for optimized
matrix multiplications. This implementation autonomously determines the optimal switch
dimensions based on the input and output feature spaces while allowing manual configu-
ration when necessary. Furthermore, we have developed a methodology to systematically
replace all linear layers within a given model with their CLOS Layer counterparts, subject
to a specific constraint. This substitution is executed only when the ratio of input size
to output size (or vice versa) does not exceed a factor of 4 due to most model expansion
and reduction parameters. This constraint can be formally expressed as:

input_size output_size
max DU — — P — <4 (5)
output size 1nput_size

This approach ensures that the CLOS Layer is applied judiciously, maintaining model
efficiency while exploiting the benefits of the CLOS network architecture in neural network
design.

Il
Wooho o

QL = o~
Sobmpud i

COorFNNW

O U= |

a8 -

=

Number of Parametare

1000

1000 &
"nput . 3000 &
Satyre, 4000 0 O

le6

Figure 2. Number of Parameters in CLOS network.

In Fig. 2, in and out features are related to Million parameter size.
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4. Experimental setup and Results

We trained traditional linear layer and transformer-related networks. Firstly, our
research aimed at Standard small dataset such as MNIST and CIFAR, which can show us
the accuracy and processing time performance in small custom models easy to compare
traditional linear layers. After that, we changed our model to a deep transformer model
such as BERT, VIT and NLLB. The following section will discuss these models’ training
setups and results.

4.1. Training setup and results in CLOS and Linear on MNIST dataset

We built two custom small models with the same setup, in which both network weights
were started from scratch during CPU and GPU training. Therefore, the MNIST dataset
image shape is reshaped as Batch x 1 x 784 that can feed directly into traditional Linear
and CLOS layers. Traditional linear and CLOS model layers were set as the same hid-
den units of Layerl, Layer2 was x[784,512, 256,128 and Layer3(x,10). SGD optimizer
both networks with learning rate 0.001. ReLU activation with cross entroty loss and
training epochs 10. The following figures show that our method, CLOS, and traditional
neural networks have no big difference in accuracy and loss in processing time, the same
at both networks, in GPU 1.50 and in CPU 3.43 minutes.

CLOSNet Training Loss CLOSNet Test Loss

0.6 —— Hidden sizes: (784, 784) —— Hidden sizes:
Hidden sizes: (512, 512)
—— Hidden sizes: (256, 256)

o5 —— Hidden sizes: (128, 128) 0.25
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Hidden sizes: : (512, 512)

—— Hidden sizes: (256, 256)
—— Hidden sizes: (128, 128)

izes:
izes:
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Epoch Epoch

CLOSNet Training Accuracy CLOSNet Test Accuracy
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cy (%)

90.0
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85.0

—— Hidden sizes: (784, 784)

80.0 —— Hidden sizes: (128, 128)

Figure 3. Simulation results for the CLOS network.

4.2. Training setup and results in CLOS and Linear on VIT model

We implemented two parallel models with identical architectures, training both net-
works from scratch on both CPU and GPU platforms. The implementation details are as
follows:

The CIFARI10 dataset was reshaped to accommodate the network architecture, with
input tensors formatted as Batch x 3 x 224 x 224 to facilitate direct input into both the
traditional Linear and CLOS Transformer attention layers.

The training process utilized the following hyperparameters:

e Batch size: 64
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Figure 4. Simulation results for the Neural network.

e Training epochs: 120

e Learning rate: 3 x 1074

e Learning rate decay (gamma): 0.7

Optimizer: Adam optimizer

Loss function: Cross-entropy loss

e Learning rate scheduler: Step scheduler with step size 1

Performance evaluation was conducted on both computational platforms:

e GPU Processing Time: 01:37 minutes per epoch

e CPU Processing Time: 03:43 minutes per epoch

Linear Layer FLOPs: 1,229 312

e Clos Layer FLOPs: 258,720

The experimental results demonstrated comparable performance between the CLOS
and traditional neural network architectures in terms of both accuracy and loss metrics.
The processing time remained consistent across both network implementations on their

respective platforms.

Both networks demonstrated equivalent convergence characteristics, suggesting that
the CLOS architecture maintains computational efficiency while preserving the learning
capabilities of traditional linear layers.
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4.3. Training setup and results for English—Mongolian Machine Translation

Models

In the development of an English—-Mongolian machine translation system, we con-
ducted comprehensive experiments using multilingual and large-scale language models,
including MBart [12], Qwen [23], NLLB-600M, and NLLB-3.3B [20]. Although these
models differ in architecture, they share common mechanisms based on the Transformer
framework for encoding, decoding, and generating token sequences. Due to the rich
morphology, agglutinative structure, and syntactic characteristics of the Mongolian lan-
guage—which differs substantially from English—the translation quality can be signifi-
cantly influenced. Therefore, each model was fine-tuned on a domain-specific Mongolian
dataset to adapt the pretrained architecture to the linguistic properties of the target
language and to improve translation performance.

The training process utilized the following hyperparameters:

e Batch size: 2 — 16 (depending on model size)
e Training epochs: 3

e Learning rate: 2 x 107° — 5 x 107

Optimizer: Adam optimizer

Loss function: Cross-entropy loss

Accuracy function: 1-WER

TABLE I
English Mongolian translation 1 Million sentence training result on CLOS replaced.
En-Mn / 1M
Model Train Loss | Test Loss | Test Acc
MBart 0.6719 0.1638 0.2171
Qwen 0.3619 0.1350 0.3424
NLLB-200-600M | 0.7383 0.1435 0.3424
NLLB-200-3.3B | 0.4524 0.1239 0.3424
TABLE II
English Mongolian translation 14 Million sentence training result on CLOS replaced.
En-Mn / 14M
Model Train Loss | Test Loss | Test Acc
Qwen 1.8535 3.8000 0.025
NLLB-200-600M | 0.5018 3.3238 0.020
NLLB-200-3.3B | 0.3423 4.0527 0.030

We ran our experiments on English-to-Mongolian machine translation with the CLOS-
modified Transformer. On the smaller 1M sentence dataset (Table I), everything looks
good: all models get nice low test losses (0.12-0.16) and reasonable accuracy (up to 0.34).
Clearly, this amount of data is enough for solid learning. Things change with the bigger
14M dataset (Table II). Training loss stays decent, but test loss shoots way up (over
3.3) and accuracy crashes to almost nothing (0.02-0.03). That’s classic underfitting—the
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Figure 5. Training curve for the NLLB-200-600M model.

models just haven’t been trained long enough to digest all the extra data. The training
curve in Figure 5 shows they’re still improving steadily. So we took the most balanced
performer, NLLB-200-600M, and kept training it on the 14M data using CLOS. After
another 15,000 steps, the training loss dropped sharply to 0.1435, which tells us the model
is adapting really well to English-Mongolian translation. Bottom line: CLOS performs
great on smaller datasets and, given enough training time, handles much larger ones
effectively too. This makes it especially useful for low-resource languages like Mongolian.
Going forward, the simplest way to get better results is probably just to train longer on
the big datasets.

5. Conclusion

Our experiments on MNIST (simple networks) and CIFARI0 (vision transformers)
validate CLOS networks as efficient alternatives to traditional linear layers, maintaining
performance while reducing parameters. Key findings include:

Parameter efficiency: Comparable accuracy with fewer parameters, ideal for memory-
constrained settings.

Performance trade-off: 1.5x-3x slower processing times. Cause of the CLOS 3
stages.

Architecture versatility: Integrates well into various models, including transform-
ers.

Equivalent convergence: Similar learning curves without compromising effective-
ness.

Future directions involve optimizing CLOS computational efficiency, exploring hardware-
specific implementations, and distilling knowledge from pretrained transformer QKV
weights into CLOS layers without training data. This approach promises parameter-
efficient architectures for size-constrained deployments.
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